Continuation in Experiments

Lecture given during Advanced Summer School on Continuation Methods for Nonlinear Problems

Jan Sieber

University of Exeter (UK)

EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, EX4 4QJ, UK

Engineering and Physical Sciences Research Council

Outline

- basic idea
- experiments (mechanical)
- simulations (random dynamic network problem)

Experimental results

- (forced mechanical oscillators) DAW Barton (Univ. Bristol)
- (forced mechanical oscillators) DTU group (J Starke, F Schilder, E Bureau, JJ Thomsen, I Santos)
- (static bucking) Neville et al. (Bristol)

General terms and conditions

To do (in experiments)

Continue equilibria & periodic orbits that are either

- dynamically unstable or
- depend sensitively on system parameters

Constraints

- no setting of internal state possible
- accuracy independent of model
- good estimate for error
- avoid system identification
- no real-time computations

Feedback control

Feedback control

Classical control engineering

- reference y_{ref}(t) given
- make output y track y_{ref}(t)
- \Rightarrow (e.g.) integral components in "k"
 - Questions: stability, optimality, robustness,...

Feedback control

Find equilibria

$$\frac{\mathrm{d}}{\mathrm{d}t}y_{\mathrm{ref}} = k_{\mathrm{w}}[y - y_{\mathrm{ref}}]$$

- washout filter (Abed et al 2004)
- \Rightarrow equilibria with control = equilibria without control
 - suppresses Hopf, period doubling

Feedback control

• for Poincaré map by Misra et al 2008

Feedback control

Find periodic orbits

- Time-delayed feedback (Pyragas): $y_{ref} = y(t T)$
- Extended (Gauthier): $y_{ref} = (1 \varepsilon)y_{ref}(t T) + \varepsilon y(t T)$
- *T* period, $0 < \varepsilon \le 1 \Rightarrow$ system with delay
- periodic orbits of period T with control = periodic orbits of period T without control
- stabilizing gains k(t) exist for single input

Feedback control

General • k stabilizing $\Rightarrow y(t) \rightarrow y_{\infty}(t; y_{ref}, p)$ for $t \rightarrow \infty$ approach

• Input-Output Map: $(y_{ref}, p) \mapsto y_{\infty}$

 $y_{\text{ref}} = y_{\infty}(y_{\text{ref}}, p)$

ETER

for y_{ref} and p in \mathbb{R}^n or function space (few Fourier modes for y_{ref})

- $u \rightarrow 0$ for $t \rightarrow \infty$ in solution
- branch points equal branch points of uncontrolled system

Controlled experiment = fixed point map

assume experiment with controllable equilibrium y* (location unknown), and stabilising feedback

 $u(t) = k^T [y_{\rm ref} - y(t)]$

⇒this defines nonlinear input output map

- ► $y_{\infty}: (y_{ref}, p) \mapsto \lim_{t \to \infty} y(t)$
- ► One evaluation of y_∞:
 - 1. set system parameters to p,
 - set input to feedback law to u(t) = k^T[y_{ref} y(t)] (y is state/output)
 - **3.** Wait until transients have settled: $y_{\infty}(y_{ref}, p) := \lim_{t \to \infty} y(t)$
- y_{ref} is equilibrium of uncontrolled experiment if and only if

 $y_{\infty}(y_{\text{ref}}, p) = y_{\text{ref}}$ (which implies $\lim_{t \to \infty} u(t) = 0$)

Controlled experiment = fixed point map

For periodic orbit y_{*}(t) and stabilising feedback

 $u(t) = k^T [y_{\text{ref}}(Tt) - y(t)]$

\Rightarrow nonlinear input output map with [0, 1]-periodic y_{ref}

- ▶ $y_{\infty}: (y_{ref}(T \cdot), T, p) \mapsto \lim_{n \to \infty} y(nT + T \cdot)$
- One evaluation of y_{∞} :
 - 1. set system parameters to p,
 - **2.** set input to feedback law to $u(t) = k^T [y_{ref}(t) y(t)]$
 - 3. Wait until transients have settled: $y_{\infty}(y_{ref}, T, p)(s) := \lim_{n \to \infty} y(nT + Ts)$
- y_{ref} is periodic orbit of uncontrolled experiment if and only if

 $y_{\infty}(y_{\text{ref}}, T, p) = y_{\text{ref}}$ (which implies $\lim_{t \to \infty} u(t) = 0$)

- impose phase condition, pseudoarclength condition on y_{ref}, T, p
- (e.g.) represent y_{ref} by its first Fourier modes

Schema excitation $p \sin(\omega t)$. angle $\theta(t)$ encoder actuator y(t) pendulum

Schema

Numerics

Schema

Numerics

Schema excitation $p \sin(\omega t)$ demand $\theta_d(t)$ PD angle $\theta(t)$ encoder actuator y(t) pendulum

Control

- feed back $\theta \theta_d$
- ⇒ always stable
- ⇒ output not natural
 - How to choose θ_d ?

 $\Rightarrow \text{ find } \theta_d$
such that $\theta_d - \theta = 0$

Experimental results

Experiment

bifurcation diagram

time profile of continuation

Experimental results

video

Backlash/impact oscillator (Results from Bureau *et al*, 2014)

- CONTINEX (COCO) numerical continuation toolbox by F Schilder
- discretization of y_{ref}:
 5 Fourier modes

Backlash/impact oscillator (Results from Bureau *et al*, 2014)

- CONTINEX (COCO) numerical continuation toolbox by F Schilder
- discretization of y_{ref}:
 5 Fourier modes

input u(t) is bifurcation parameter p output y(t)

+ simple fixed point iteration for + derivative gain Fourier modes ≥ 1 (PD control)

Motivating example IV

Check for saddle-node normal form:

 $\dot{y} = -p - y^2$

⇒Equilibrium $y_s = \sqrt{-p}$ stable, $y_u = -\sqrt{-p}$ unstable.

 $p(t) = p_0 + k[y(t) - y_0]$

Equilibria satisfy

$$0 = -p_{eq} - y_{eq}^{2}$$

= -{p_0 + k[y_{eq} - y_0]} - y_{eq}^{2}

Stability: $-k - 2y_{eq} \Rightarrow$ stable for $y_{eq} \ge -k/2$.

Energy harvester — Barton & S, 2013

nonlinear oscillator (damping difficult to model)

Energy harvester — Barton & S, 2013

nonlinear oscillator (damping difficult to model)

Evolution of control through bifurcation diagram

Evolution of control through bifurcation diagram

Time profiles

Solution surface and errors

Solution surface and errors

Stable and unstable subspaces of periodic orbits

Recent experiments on buckling beams

Neville, Groh, Pirrera, Schenk, PRL'18

EXETER

Recent experiments on buckling beams

Neville, Groh, Pirrera, Schenk, PRL'18

Numerical results for model

Recent experiments on buckling beams

Neville, Groh, Pirrera, Schenk, PRL'18

Experiment

Model

Using control-based continuation in simulations

Disease spreading on network

[Gross et al, PRL 2006]

network with N nodes (individuals) with state either S (susceptible) or I (infected)

- kN links (initially random, k ~ 10)
- at every step:
 - I individual recovers with probability r
 - infection travels along SI link (infects S node) with probability p
 - SI link is rewired (keep S node, replace I node by random other S node) with probability w
- system has parameter range where disease-free and endemic equilibrium coexist

Disease spreading on network [Gross *et al*, PRL 2006]

Disease spreading on network [Gross *et al*, PRL 2006]

Mean field model

- I number of infected,
- L_{ab} number of links between a and b
- p infection probability, r recovery probability, w rewiring probability

$$\dot{I} = pL_{SI} - rI$$

$$\dot{L}_{II} = pL_{ISI} + pL_{SI} - 2rL_{II}$$

$$\dot{L}_{SS} = (r + w)L_{SI} - 2pL_{SSI}$$

$$N = I + S$$

$$kN = L_{II} + L_{SS} + L_{SI}$$

 $L_{abc} \approx L_{ab}L_{bc}/b \quad \Leftarrow closure assumption$

Rigorous definition of equilibrium?

- almost surely disease goes extinct eventually
- avoid this effect by re-introducing infected nodes
- for p in bistable regime stochastic system has stationary density with (in projection) 2 well-separated local maxima stable equilibria:
 - disease close to extinct
 - large number of infected
- Consider macroscopic output, e.g., I, conditional balance in the long run

 $I_{eq} = \lim_{t \to \infty} \operatorname{mean} \left\{ I(s) : s \in [t, t+T], I(s) \in [I_{low}, I_{up}] \right\}$

(expectation of conditional stationary density)

Proposed definition of (unstable) equilibrium Include feedback loop:

- Choose reference fraction of infected I_{ref}
- at every step:

if $I < I_{ref}$, infect $I_{ref} - I$ individuals if $I > I_{ref}$, "cure" $I - I_{ref}$ individuals

Iref is equilibrium value if, after transients have settled

mean artificically cured = mean artificially infected

Or: long-time mean of feedback loop input is zero.

 $\lim_{t\to\infty} E[I(t)-I_{\rm ref}]=0$

- For large N: $\lim_{t\to\infty} E[I(t) I_{ref}]^2 \sim N^{-1}$.
- ▶ Resulting equilibrium I_{ref} independent of choice of feedback loop for $N \rightarrow \infty$.

Proposed definition of (unstable) equilibrium

mean control input & regression curve

EXETER

Newton iteration & continuation with uncertainty

Linear regression with Gaussian process

Procedure for continuation with uncertainty

Inner loop (replacing Newton iteration):

- **1.** find root x_0 of regression curve $y_r(x)$ with Newton it.
- 2. determine where to measure next:
 - ► x for which measurement $y_r(x) \pm \sigma_r(x)$ would minimize error bar of root x_0 for updated y_r , or
 - ► x where measurement $y_r(x) \pm \sigma_r(x)$ changes root x_0 the most

Both are nonlinear optimization problems on current regression curve y_r (cheap in principle).

optimal new x not necessary, only sensible x

- **3.** stop if expected effect on root x_0 is not worth additional measurement.
- **4.** measure (mean y, var y) at new x, update (y_r, σ_r) with new value
- 5. back to 1.

Disease on network equilibrium continuation

Disease on network equilibrium continuation

Animation of fold continuation

Contination in experiments

- ▶ evaluation of residual $F : (y_{ref}, p) \rightarrow y_{\infty}$ is slow
- ⇒ restriced to low dimension of control inputs and small number of (eg) Fourier modes
- ► low accuracy of F (relative error $\approx 10^{-2}$ in clean experiments)
- ⇒ restricted to well-conditioned problems
- ⇒ F. Schilder's coco toolbox continex
- limiting factor: ability to provide stabilizing real-time feedback
- ⇒ hardest part is problem specific
- \Rightarrow new algorithms needed

