
Nonlinear Parameter Continuation with coco

Lecture given during
Advanced Summer School on

Continuation Methods for Nonlinear Problems

Harry Dankowicz

Department of Mechanical Science and Engineering
University of Illinois at Urbana-Champaign

August 13-24, 2018

Outline

1 An Example of Functional Optimization

2 Principles of Continuation

3 The Collocation Continuation Problem

The Catenary Functional

Consider the autonomous two-point boundary-value problem

ẋ1 = x2, ẋ2 = (1 + x22)/x1, x1(0) = 1, x1(1) = p

in terms of the vector of state variables x = (x1, x2) ∈ R2 and the
scalar problem parameter p ∈ R. Solutions correspond to extremal
curves s 7→ f (s), and their derivatives, for the integral functional∫ 1

0
f (s)

√
1 + f ′(s)2 ds

in the space of functions that satisfy the boundary conditions
f (0) = 1 and f (1) = p.

Derive Euler-Lagrange’s equations for the functional!

The Catenary Functional

For arbitrary initial conditions x1(0) and x2(0), solutions to the
associated initial-value problem are given by

x1(t) =
x1(0)√

1 + x22 (0)
cosh

√

1 + x22 (0)

x1(0)
t + arcsinh x2(0)

and

x2(t) = sinh

√

1 + x22 (0)

x1(0)
t + arcsinh x2(0)

 .

The shape is that of a catenary curve.

Verify by substitution!

The Catenary Functional

Recall that x1(0) = 1 and x1(1) = p.

For each p, a solution to the boundary-value problem then
corresponds to a solution of the nonlinear equation

1√
1 + x22 (0)

cosh

(√
1 + x22 (0) + arcsinh x2(0)

)
= p.

Since the left-hand side is convex with a unique global minimum at
x2(0) ≈ −2.26, it follows that there are no solutions to the
boundary-value problem for p . 0.587 and two solutions for
p & 0.587.

Graph left-hand side as a function of x2(0)!

The Catenary Functional

Alternatively, approximate x1 and x2 by two polynomials

p1(t) :=
m∑

k=0

akt
k , p2(t) :=

m∑
k=0

bkt
k

where
p1(0) = 1, p1(1) = p

and
p′1(ti) = p2(ti), p

′
2(ti) = (1 + p22(ti))/p1(ti)

for some sequence of collocation nodes {ti}mi=1 on the interval
[0, 1].

Write out equations for m = 2!

The Catenary Functional

Alternatively, approximate f by the polynomial

p(t) :=
m∑

k=0

akt
k ,

such that ∇F (a0, . . . , am, λ1, λ2) = 0, where

F (a0, . . . , am, λ1, λ2) :=
n∑

i=1

wi

(
p(ti)

√
1 + p′2(ti)

)
− λ1(p(0)− 1)− λ2(p(1)− p)

for some sequences of quadrature weights {wi}ni=1 and quadrature
nodes {ti}ni=1 on [0, 1].

Write out equations for m = 2!

The Catenary Functional

The matlab-based Computational Continuation Core (coco)
enables an approximate analysis of the catenary boundary-value
problem, even without access to the closed-form solution.

We construct a family of approximate solutions for admissible
values of p by

1 constructing a family of approximate trajectory segments that
satisfy x1(0) = 1 and x2(0) = 0, but are defined only on the
interval [0,T] for T ∈ [0, 1];

2 constructing a family of approximate trajectory segments on
the interval [0, 1] that satisfy x1(0) = 1.

Here, continuation implements the classical method of shooting.

The Catenary Functional

Encode the vector field in the anonymous function cat, as shown
in the following command

>> cat = @(x,p) [x(2,:); (1+x(2,:).^2)./x(1,:)];

The encoding is vectorized and autonomous.

A corresponding trajectory segment is given by the single-point
time history assigned below to the t0 and x0 variables.

>> t0 = 0;
>> x0 = [1 0];

Here, t0 encodes a one-dimensional array of time instances and x0

encodes a two-dimensional array of the corresponding points in
state space, with one row per time instant.

The Catenary Functional

We compute a family of trajectory segments under variations in T
by invoking the coco entry-point function as shown in the
sequence of commands below.

>> prob = coco_prob();
>> prob = ode_isol2coll(prob, ’’, cat, t0, x0, []);
>> data = coco_get_func_data(prob, ’coll’, ’data’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’pars’, ...

[maps.x0_idx; maps.x1_idx(1); maps.T_idx], ...
{ ’y1s’ ’y2s’ ’y1e’ ’T’ });

>> cont_args = { 1, { ’T’ ’y1e’ }, [0 1] };
>> coco(prob, ’coll1’, [], cont_args{:});

Each such segment is an approximate discretization of the exact
solution x1(t) = cosh t, x2(t) = sinh t. In particular, x1(T) ranges
between cosh 0 = 1 and cosh 1 ≈ 1.5431.

The Catenary Functional

We compute a family of trajectory segments under variations in T
by invoking the coco entry-point function as shown in the
sequence of commands below.

>> prob = coco_prob();
>> prob = ode_isol2coll(prob, ’’, cat, t0, x0, []);
>> data = coco_get_func_data(prob, ’coll’, ’data’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’pars’, ...

[maps.x0_idx; maps.x1_idx(1); maps.T_idx], ...
{ ’y1s’ ’y2s’ ’y1e’ ’T’ });

>> cont_args = { 1, { ’T’ ’y1e’ }, [0 1] };
>> coco(prob, ’coll1’, [], cont_args{:});

Each such segment is an approximate discretization of the exact
solution x1(t) = cosh t, x2(t) = sinh t. In particular, x1(T) ranges
between cosh 0 = 1 and cosh 1 ≈ 1.5431.

The Catenary Functional

We compute a family of trajectory segments under variations in T
by invoking the coco entry-point function as shown in the
sequence of commands below.

>> prob = coco_prob();
>> prob = ode_isol2coll(prob, ’’, cat, t0, x0, []);
>> data = coco_get_func_data(prob, ’coll’, ’data’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’pars’, ...

[maps.x0_idx; maps.x1_idx(1); maps.T_idx], ...
{ ’y1s’ ’y2s’ ’y1e’ ’T’ });

>> cont_args = { 1, { ’T’ ’y1e’ }, [0 1] };
>> coco(prob, ’coll1’, [], cont_args{:});

Each such segment is an approximate discretization of the exact
solution x1(t) = cosh t, x2(t) = sinh t. In particular, x1(T) ranges
between cosh 0 = 1 and cosh 1 ≈ 1.5431.

The Catenary Functional

We compute a family of trajectory segments under variations in T
by invoking the coco entry-point function as shown in the
sequence of commands below.

>> prob = coco_prob();
>> prob = ode_isol2coll(prob, ’’, cat, t0, x0, []);
>> data = coco_get_func_data(prob, ’coll’, ’data’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’pars’, ...

[maps.x0_idx; maps.x1_idx(1); maps.T_idx], ...
{ ’y1s’ ’y2s’ ’y1e’ ’T’ });

>> cont_args = { 1, { ’T’ ’y1e’ }, [0 1] };
>> coco(prob, ’coll1’, [], cont_args{:});

Each such segment is an approximate discretization of the exact
solution x1(t) = cosh t, x2(t) = sinh t. In particular, x1(T) ranges
between cosh 0 = 1 and cosh 1 ≈ 1.5431.

The Catenary Functional

We compute a family of trajectory segments under variations in T
by invoking the coco entry-point function as shown in the
sequence of commands below.

>> prob = coco_prob();
>> prob = ode_isol2coll(prob, ’’, cat, t0, x0, []);
>> data = coco_get_func_data(prob, ’coll’, ’data’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’pars’, ...

[maps.x0_idx; maps.x1_idx(1); maps.T_idx], ...
{ ’y1s’ ’y2s’ ’y1e’ ’T’ });

>> cont_args = { 1, { ’T’ ’y1e’ }, [0 1] };
>> coco(prob, ’coll1’, [], cont_args{:});

Each such segment is an approximate discretization of the exact
solution x1(t) = cosh t, x2(t) = sinh t. In particular, x1(T) ranges
between cosh 0 = 1 and cosh 1 ≈ 1.5431.

Principles of Continuation

Suppose that the function

Φ : Rn 7→ Rm, n ≥ m ≥ 1

is continuously differentiable. The equation

Φ(u) = 0

is a (continuation) zero problem in the vector u of unknown
continuation variables. The components of Φ are zero functions.

Continuation is a computational method for successively growing a
collection of solutions to a zero problem.

A zero problem is adaptive if Φ changes during continuation and
non-adaptive otherwise.

Principles of Continuation

The dimensional deficit of a zero problem is the difference n −m
between the number of continuation variables and the number of
zero functions. The dimensional deficit remains constant during
continuation.

A solution u∗ of a zero problem is regular if

∂uΦ(u∗)

has full rank. There exists a locally unique manifold of solutions to
a zero problem through a regular solution. The manifold’s
dimension equals the corresponding dimensional deficit.

Solution manifolds of dimension 1 are called branches.

Principles of Continuation

During continuation, the function Ψ : Rn 7→ Rr monitors
properties of solutions to the zero problem. The components of Ψ
are monitor functions.

The extended continuation problem

F (u, µ) = 0

is defined in terms of the function

F : (u, µ) 7→
(

Φ(u)
Ψ(u)− µ

)
and a vector of continuation parameters µ ∈ Rr . Its dimensional
deficit equals n−m. If u∗ is a regular solution of the zero problem,
then (u∗,Ψ(u∗)) is a regular solution of the extended continuation
problem.

Principles of Continuation

Choose I and J such that I ∪ J = {1, . . . , r} and I ∩ J = ∅. The
restriction

G : (u, µJ) 7→ F (u, µ)

∣∣∣∣
µI=µ∗I

defines a restricted continuation problem

G (u, µJ) = 0

with dimensional deficit n −m − |I|.

If
(
u∗, µ∗J

)
is a regular solution of the restricted continuation

problem, then u∗ is a regular solution of the reduced continuation
problem (

Φ(u)
ΨI(u)− µ∗I

)
= 0

Principles of Continuation

We construct a restricted continuation problem by defining the
functions Φ and Ψ, and by choosing the index set I corresponding
to inactive continuation parameters.

We initialize a restricted continuation problem by assigning µ∗I and
providing an initial solution guess for (u, µJ) with the expectation

that there exists a regular solution
(
u∗, µ∗J

)
nearby.

In practice, if u0 is an initial solution guess for u, then

µ∗I = ΨI(u0)

and ΨJ(u0) is an initial solution guess for µJ.

Principles of Continuation

In an adaptive continuation problem, the number and meaning of
the zero functions and the continuation variables may change
during continuation.

In contrast, the number and meaning of the monitor functions
must remain unchanged also for adaptive continuation problems.
They must be encoded accordingly.

We may explore different submanifolds of the solution manifold of
the original zero problem by reassigning elements between I and J.

A reassignment from J to I imposes a constraint on the solutions
to the zero problem. A reassignment from I to J releases the
corresponding continuation parameter.

The Collocation Continuation Problem

For continuation of approximate solutions of the dynamical system

ẋ = F (t, x , p), (x , p) ∈ Rn × Rq, t ∈ [T0,T0 + T],

define

Φ : (υ,T0,T , p) 7→
(

T
2N vec (κF ∗ Fcn)−W ′ · υ

Q · υ

)
in terms of the column matrix υ of unknown values of the state
variables on a mesh of N(m + 1) base points, and the values

Fcn = F (T0 + Ttcn, vecn (W · υ) , 11,Nm ⊗ p)

of the vector field evaluated on a set tcn of Nm collocation nodes
on the interval [0, 1].

The Collocation Continuation Problem

The dimensional deficit of the collocation zero problem equals

n + q + 2.

For an autonomous vector field, append the monitor function

u 7→ T0

and assign the index of the corresponding continuation parameter
to I. The dimensional deficit of the corresponding restricted
continuation problem then equals

n + q + 1.

The Catenary Functional

In coco, we construct an empty continuation problem using the
coco_prob command:

>> prob = coco_prob();

The commands

>> cat = @(x,p) [x(2,:); (1+x(2,:).^2)./x(1,:)];
>> t0 = 0;
>> x0 = [1 0];
>> prob = ode_isol2coll(prob, ’’, cat, t0, x0, []);

append the collocation zero problem on a default mesh consisting
of 10 intervals with 5 base points and 4 collocation nodes in each
interval, associate T0 with the inactive continuation parameter
’coll.T0’, and initialize the continuation problem with

υ = vec
(
11,50 ⊗

(
1 0

))
, T0 = 0, T = 0, p = ∅.

The Catenary Functional

The commands

>> data = coco_get_func_data(prob, ’coll’, ’data’);
>> maps = data.coll_seg.maps;
>> prob = coco_add_pars(prob, ’pars’, ...

[maps.x0_idx; maps.x1_idx(1); maps.T_idx], ...
{ ’y1s’ ’y2s’ ’y1e’ ’T’ });

append the monitor functions

u 7→

 υi
υf ,1
T

 ,

label the corresponding continuation parameters by ’y1s’, ’y2s’,
’y1e’, and ’T’, and assign the corresponding indexes to I.

The Catenary Functional

The dimensional deficit of the restricted continuation problem is
now −1. The commands

>> cont_args = { 1, { ’T’ ’y1e’ }, [0 1] };
>> coco(prob, ’coll1’, [], cont_args{:});

identify the desired manifold dimension as 1, reassign the indexes
of the continuation parameters ’T’ and ’y1e’ to J, and restrict
continuation to the domain ’T’∈ [0, 1].

By default, the collocation continuation problem is non-adaptive,
so the number and meaning of the continuation variables and the
zero functions is unchanged during continuation.

The Catenary Functional

As an alternative, the commands

>> prob = coco_set(prob, ’cont’, ’NAdapt’, 10);
>> cont_args = { 1, { ’T’ ’y1e’ }, [0 1] };
>> coco(prob, ’coll1’, [], cont_args{:});

instruct the continuation algorithm to make adaptive changes to
the problem discretization after every ten successive steps of
continuation.

Such adaptive changes are designed to ensure that a suitably
estimated discretization error remains below a critical threshold
during continuation.

More frequent changes, or a finer initial mesh, may be required in
order to ensure successful continuation across the desired
computational domain.

