
Nonlinear Parameter Continuation with coco

Lecture given during
Advanced Summer School on

Continuation Methods for Nonlinear Problems

Harry Dankowicz

Department of Mechanical Science and Engineering
University of Illinois at Urbana-Champaign

August 13-24, 2018



Outline

1 Motivation and Review

2 Principles of Constrained Optimization

3 Staged Construction of Adjoints

4 Coupled Problems



Motivation
For given time of travel, find a spacecraft transfer orbit between
two halo orbits of known period around a libration point of the
circular restricted three-body problem that minimizes fuel cost.

-1

0.5

-0.5

y

0

z

0

-0.2

x

-0.5 -0.4

0.5

-0.6
-0.8

-1

H
2

H
3

Initial Design

Optimal Design #1

Optimal Design #2



Motivation

For given total material volume, find a pair of values for the width
and thickness of second layer of a microresonator that maximizes
the dynamic range.

M. Saghafi, H. Dankowicz, W. Lacarbonara, Proc. R. Soc. A, 2015



Problem decomposition

• In each case, constraints restrict attention to an implicitly
defined manifold along which optimization is performed.

• The constraint problem supports a natural decomposition into
individually defined subproblems that are glued together
during problem construction.

• Is the same true for the variational conditions that must hold
at a local extremum?

• Given the use of parameter continuation in mapping out the
implicitly defined submanifold, does this method play a role in
the analysis of the optimization problem?



Problem decomposition

• In each case, constraints restrict attention to an implicitly
defined manifold along which optimization is performed.

• The constraint problem supports a natural decomposition into
individually defined subproblems that are glued together
during problem construction.

• Is the same true for the variational conditions that must hold
at a local extremum?

• Given the use of parameter continuation in mapping out the
implicitly defined submanifold, does this method play a role in
the analysis of the optimization problem?



Problem decomposition

• In each case, constraints restrict attention to an implicitly
defined manifold along which optimization is performed.

• The constraint problem supports a natural decomposition into
individually defined subproblems that are glued together
during problem construction.

• Is the same true for the variational conditions that must hold
at a local extremum?

• Given the use of parameter continuation in mapping out the
implicitly defined submanifold, does this method play a role in
the analysis of the optimization problem?



Problem decomposition

• In each case, constraints restrict attention to an implicitly
defined manifold along which optimization is performed.

• The constraint problem supports a natural decomposition into
individually defined subproblems that are glued together
during problem construction.

• Is the same true for the variational conditions that must hold
at a local extremum?

• Given the use of parameter continuation in mapping out the
implicitly defined submanifold, does this method play a role in
the analysis of the optimization problem?



Constrained optimization

Fundamental problem:

Find a locally optimal solution (û, µ̂) that minimizes the function
(u, µ) 7→ µ1 under the constraints imposed by the extended
continuation problem (

Φ(u)
Ψ(u)− µ

)
= 0

The zero function Φ : U → Y and monitor function Ψ : U → Rl

are continuously Fréchet differentiable mappings; the continuation
variable space U is a real Banach space; the image space Y is a
real Banach space; and the components of the vector µ ∈ Rl are
the continuation parameters.



Constrained optimization

Define the scalar-valued Lagrangian

L(u, µ, λ, η) := µ1 +
〈
λ,Φ(u)

〉
Y

+ η> · (Ψ(u)− µ)

where 〈·, ·〉Y : Y ∗ × Y → R is the pairing of Y with its dual, and
the vectors λ ∈ Y ∗ and η ∈ Rl are the corresponding Lagrange
multipliers.

Suppose that (û, µ̂ = Ψ(û)) is an optimal solution, and that the
range of DΦ(û) equals Y and its nullspace is of finite dimension
d ≤ l .



Constrained optimization

Then, there exist unique λ̂ and η̂ such that δL = 0, i.e.,

0 = δµ1 +
〈
δλ,Φ(û)

〉
Y

+ δη> · (Ψ(û)− µ̂)

+
〈
λ̂,DΦ(û)δu

〉
Y

+ η̂> · (DΨ(û)δu − δµ)

or, equivalently,

0 = δµ1 +
〈
δλ,Φ(û)

〉
Y

+ δη> · (Ψ(û)− µ̂)

+
〈

(DΦ(û))∗ λ̂+ (DΨ(û))∗ η̂, δu
〉
U
− η̂> · δµ

for arbitrary variations δu, δµ, δλ, and δη.



Constrained optimization

From the independence of the individual variations, we conclude
that η̂1 = 1, η̂{2,...,l} = 0, and

Φ(û) = 0, Ψ(û)− µ̂ = 0, (DΦ(û))∗λ̂+ (DΨ(û))∗η̂ = 0

and, consequently, that

Φ(û) = 0, Ψ(û)− µ̂ = 0, (DΦ(û))∗λ̂+ (DΨ1(û))∗ = 0

is a necessary condition for a local extremum at (û, µ̂) along the
constraint manifold defined implicitly by Φ.



Fundamental insights

A local optimum may be found using a method of successive
continuation (Kernévez & Doedel, 1987) along manifolds defined
by restrictions of the extended continuation problem

Φ(u)
(DΦ(u))∗λ+ (DΨ(u))∗η

Ψ(u)− µ
η − ν

 = 0

obtained by fixing subsets of the continuation parameters µ and ν,
until all components of µ are free and all components of ν equal 0,
except ν1 which equals 1.



Fundamental insights

Step 1: Detect a fold in µ1 along a one-dimensional solution branch,
with only trivial solution to adjoint problem away from fold,
obtained by fixing d − 1 other components of µ.

Step 2: Continue along a solution path in λ and η until η1 = 1, for
the same choice of fixed µ’s.

Step 3: Perform one or several runs of continuation, each time
releasing one or several of the previously fixed components of
µ, until all remaining elements of ν are fixed at 0.



Staged construction

Suppose that Y = Y1 × · · · ×YN , U = U1 × · · · ×UN , and there is
a sequence 0 ≤ l1 ≤ · · · ≤ lN = l , such that

Φn(u) = φn(uKo
n
, un)

and
Ψ{ln−1+1,...,ln}(u) = ψn(uKo

n
, un)

in terms of the n-th stage realizations φn and ψn, and a sequence
of subsets Ko

n ⊆ {1, . . . , n − 1}, such that Ko
1 = ∅.

Accordingly, in the n-th stage of construction, we define the
realizations φn and ψn, the index set Ko

n, the continuation
variables un, and the continuation parameters µ{ln−1+1,...,ln}.



Staged construction

If Ko
n = ∅ for some n > 1, then the n-th stage realizations are

independent of the continuation variables introduced in previous
stages. In this case, the problem added at the n-th stage is
embedded in the overall continuation problem.

Continuation problems that arise in practice often naturally
decompose into distinct embedded problems whose mutual
dependence is defined at later stages of construction in terms of
gluing conditions that depend only on a small subset of the
continuation variables associated with each embedded problem.



Staged construction

At each stage of construction, variations of the partial Lagrangian

〈λn, φn〉Yn
+ η>{ln−1+1,...,ln} ·

(
ψn − µ{ln−1+1,...,ln}

)
with respect to uKo

n
and un yield〈

(Dφn)∗ λn + (Dψn)∗ η{ln−1+1,...,ln}, (δuKo
n
, δun)

〉
UKo

n
×Un

Each stage of construction contributes terms to partially populated
adjoint equations associated with variations in uKo

n
, as well as new

equations associated with variations in un. Only once all elements
of Φ and Ψ have been constructed are the adjoint equations fully
formed.



Staged construction

We visualize the details of this process by considering an upper
triangular operator matrix representation of the adjoint D(Φ,Ψ)
with rows associated with variations in the continuation variables
and columns associated with the Lagrange multipliers.

At each stage of construction, the matrix representation grows by
the addition of columns for the new Lagrange multipliers λn and
η{ln−1+1,...,ln} and rows for variations in the new continuation
variables un.



Staged construction

minimize: e(x(0), x(T ),T , p) +
∫ T

0 g(x , p)dt
subject to: ẋ − f (x , p) = 0, b(x(0), x(T ),T , p) = 0,∫ T

0 h(x , p)dt = 0

J =


− ˙(·)− Tfx 0 hx Tgx 0
−(·)|τ=0 bx(0) 0 ex(0) 0
(·)|τ=1 bx(1) 0 ex(1) 0

−〈(·), f 〉 bT 0 eT +
∫ 1

0 g dτ 0

−T 〈(·), fp〉 bp
∫ 1

0 hp dτ ep + T
∫ 1

0 gp dτ Iq





Staged construction

As the new equations do not depend on λ{1,...,n−1} or η{1,...,ln−1},
the corresponding entries are 0, giving the matrix an upper
triangular/rectangular form.

J1 X1 Y1

J2 X2 Y2

. . .
...

...
JN XN YN



Accordingly, in the n-th stage of construction, we define the
contributions to the matrix representation in terms of the
realizations

(
Dφn(uKo

n
, un)

)∗
and

(
Dψn(uKo

n
, un)

)∗
.



Code implementation

The matlab-based package coco implements staged
construction for the extended continuation problem, including the
adjoint equations. As an example, to find the inflection point along
the frequency-response curve of a linear oscillator:

Problem initialization:

>> prob = coco_prob;
>> prob = coco_set(prob, ’ode’, ’autonomous’, false);
>> prob = coco_set(prob, ’cont’, ’NAdapt’, 1);
>> prob = coco_set(prob, ’coll’, ’NTST’, 100);

Trajectory initialization:

>> [t1, x1] = ode45(@(t,x) linode(t, x, 0.98), ...
1.56164+[0 2*pi/0.98], [1.01958; 0]);

>> [t2, x2] = ode45(@(t,x) linode(t, x, 0.88), ...
1.49982+[0 2*pi/0.88], [1.10077; 0]);



Code implementation

During continuation of solutions to trajectory problems, functions
defining first derivatives are optional. During continuation of
solutions to trajectory problems and associated adjoint equations,
functions defining first derivatives are required, while functions
defining second derivatives are optional.

Trajectory problems:

>> coll_funcs = {@linode , @linode_dx , @linode_dp , ...
@linode_dt , @linode_dxdx , @linode_dxdp , ...
@linode_dpdp , @linode_dtdx , @linode_dtdp , ...
@linode_dtdt};

>> prob = ode_isol2coll(prob, ’orb1’, coll_funcs{:}, ...
t1, x1, ’om’, 0.98);

>> prob = ode_isol2coll(prob, ’orb2’, coll_funcs{:}, ...
t2, x2, 0.88);



Code implementation

Boundary conditions:

>> bc_funcs = {@linode_bc , @linode_bc_du , ...
@linode_bc_dudu};

>> [data1, uidx1] = coco_get_func_data(prob, ...
’orb1.coll’, ’data’, ’uidx’);

>> maps1 = data1.coll_seg.maps;
>> [data2, uidx2] = coco_get_func_data(prob, ...

’orb2.coll’, ’data’, ’uidx’);
>> maps2 = data2.coll_seg.maps;
>> prob = coco_add_func(prob, ’po1’, bc_funcs{:}, ...

data1, ’zero’, ’uidx’, uidx1([maps1.x0_idx; ...
maps1.x1_idx; maps1.T_idx; maps1.p_idx]));

>> prob = coco_add_func(prob, ’po2’, bc_funcs{:}, ...
data2, ’zero’, ’uidx’, uidx2([maps2.x0_idx; ...

maps2.x1_idx; maps2.T_idx; maps2.p_idx]));



Code implementation

Gluing conditions and fitness function:
prob = coco_add_glue(prob, ’glue’, uidx1(maps1.p_idx), ...

uidx2(maps2.p_idx), -0.1);

prob = coco_add_glue(prob, ’amp’, uidx1(maps1.x0_idx(1)), ...

uidx2(maps2.x0_idx(1)), ’ampdiff’, ’inactive’);

Adjoints:
prob = adjt_isol2coll(prob, ’orb1’);

prob = adjt_isol2coll(prob, ’orb2’);

[data1, axidx1] = coco_get_adjt_data(prob, ’orb1.coll’, ’data’, ’axidx’);

opt1 = data1.coll_opt;

[data2, axidx2] = coco_get_adjt_data(prob, ’orb2.coll’, ’data’, ’axidx’);

opt2 = data2.coll_opt;

prob = coco_add_adjt(prob, ’po1’, ’aidx’, ...

axidx1([opt1.x0_idx; opt1.x1_idx; opt1.T_idx; opt1.p_idx]));

prob = coco_add_adjt(prob, ’po2’, ’aidx’, ...

axidx2([opt2.x0_idx; opt2.x1_idx; opt2.T_idx; opt2.p_idx]));

prob = coco_add_adjt(prob, ’glue’, ’aidx’, ...

[axidx1(opt1.p_idx); axidx2(opt2.p_idx)]);

prob = coco_add_adjt(prob, ’amp’, ’d.ampdiff’, ’aidx’, ...

[axidx1(opt1.x0_idx(1)); axidx2(opt2.x0_idx(1))]);



Final reflections

• The coco toolbox library supports construction of zero
problems and adjoints associated with equilibrium points,
autonomous and non-autonomous trajectory segments,
multi-point boundary-value problems, and periodic-orbit
problems, as well as autonomous multi-segment periodic orbit
problems in hybrid dynamical systems.

• Homotopy can be used for initializing a solution guess for the
zero problem. The solution guess for the Lagrange multipliers
is the trivial zero solution. Nonzero solutions are obtained
after branch-switching at fold points.

• Ongoing work aims to provide optimization support for
periodic orbits in delay-differential equations with multiple
constant delays, as well as to explore the topology of the
extended solution manifold in (u, µ, λ, η, ν).


