
Nonlinear Parameter Continuation with coco

Lecture given during
Advanced Summer School on

Continuation Methods for Nonlinear Problems

Harry Dankowicz

Department of Mechanical Science and Engineering
University of Illinois at Urbana-Champaign

August 13-24, 2018



Outline

1 Aphorisms

2 Coding paradigm

3 Toolbox projects

4 Intellectual property



Aphorisms

• Extend, don’t reduce!

• If your problem doesn’t have a solution, solving for it may be
the definition of insanity!

• coco doesn’t solve problems, it creates them!

• If your code doesn’t work (at all or as expected), don’t blame
the problem, blame your code!

• If your code doesn’t work as expected, don’t start by changing
parameter settings. Ask why!



Coding paradigm

The philosophy implemented in coco is one of differentiating
between the construction of a continuation problem and the
analysis of its solutions. First build a problem, then solve it!

This means that ideas about starting and restarting continuation
do not immediately apply to coco (although this insight didn’t get
fully internalized even to the developers until late in the game).

Construction puts upper limits on the dimension of the solution
manifold, but the complete dimension is not known until the last
zero function and monitor function has been added.



Coding paradigm

coco is intentionally modular. This means that you, as a user or
developer, can add to and expand the coco universe of
functionality without having to touch parts that others depend on.

You can trust the core to remain stable and backward compatible
(as long as I’m in the game). Similarly, if you build a toolbox,
don’t put out a final release until you have defined an interface
that will remain backward compatible. You can extend and refine,
but tell others what to expect!

Code is a bit like an old 78 RPM phonograph recording. Without a
Victrola, it’s just a piece of bakelite.



Coding paradigm

By decomposing a problem into its constituent parts, coco
encourages you to build reusable tools and components. More
sophisticated functionality (slot functions, event handlers,
adaptation) can be added at later stages without wreaking havoc
to basic behaviors.

As you realize further uses for your tools, additional constructors
can be added to assemble input information into the data required
to construct a function instance. At some point, code that appears
in multiple constructors can be brought out into a stand-alone
function. Code that you don’t want a user to call directly can be
shielded in a private folder.



Toolbox projects

Toolboxes not discussed yet in this course: dft, calcvar,
multishoot, dae, dde, atlas_kd_par, fem, fp, ... yours? Some
ideas for practice can be found in Chapter 21 of Recipes

Functionality not implemented (yet): higher-order numerical
differentiation, automatic differentiation, GUIs, normal forms,
continuation of codimension-2 bifurcations, error estimation for
variational equations.

coco...co stands for continuation, core, construction, collocation,
covering, composition, collaboration!



Intellectual property

When referencing coco in a publication, you should cite Recipes
for Continuation as the authoritative source for the general
platform. If you use more recent functionality (optimization), cite
the April 2018 SIADS paper. The Sourceforge repository can be
cited as a location for the code and tutorial documentation, but
you would need to include a “last accessed date”.

When disseminating your own coco-compatible code, specify the
release of coco that this has been tested with. If you want to be
certain to receive updates on any bug fixes to coco sign up for
the coco mailing list, or check the Sourceforge Wiki.

The coco license is the GPLv3:
https://www.gnu.org/licenses/gpl-3.0.en.html


