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Abstract
In traditional physicochemical modeling, one derives evolution equations at
the (macroscopic, coarse) scale of interest; these are used to perform a variety
of tasks (simulation, bifurcation analysis, optimization) using an arsenal of
analytical and numerical techniques. For many complex systems, however,
although one observes evolution at a macroscopic scale of interest, accurate
models are only given at a more detailed (fine-scale, microscopic) level of
description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynam-
ics). Here, we review a framework for computer-aided multiscale analysis,
which enables macroscopic computational tasks (over extended spatiotem-
poral scales) using only appropriately initialized microscopic simulation on
short time and length scales. The methodology bypasses the derivation of
macroscopic evolution equations when these equations conceptually exist
but are not available in closed form—hence the term equation-free. We se-
lectively discuss basic algorithms and underlying principles and illustrate
the approach through representative applications. We also discuss potential
difficulties and outline areas for future research.
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Closure: relation
embodying the effect
of unmodeled variables
on those variables
(observables) in terms
of which the (coarse)
model is formulated
(closed)

Coarse time-stepper:
three-step procedure
to observe the
evolution in time of
the coarse states
modeled by an
unknown coarse
equation: lift, simulate
with the fine-scale
model, and restrict
(observe)

Lifting: one-to-many
mapping from a coarse
to a fine-scale state;
reinitialization of the
fine-scale model
consistent with a
prescribed coarse state

Restriction: mapping
from a fine scale to a
coarse state;
observation
(estimation) of the
coarse state from the
corresponding
fine-scale state

Inner/outer solver:
fine-scale/coarse
components in
two-tier equation-free
computations

1. INTRODUCTION

In a wide range of chemical, physical, and biological systems, macroscopic, coherent behavior
emerges from interactions between microscopic entities (molecules, cells, individuals in a popu-
lation) among themselves and with their environment. In many cases, a macroscopic model (such
as the Navier-Stokes equations for fluid flow or a reaction-diffusion equation) has been formally
derived that quantitatively describes behavior at this level. These models typically take the form
of conservation laws (species, mass, momentum, energy) closed through phenomenological con-
stitutive equations (reaction rates as functions of concentrations, viscous stresses as functionals of
velocity gradients). Mathematical techniques including homogenization, averaging, renormaliza-
tion, and the theory of inertial manifolds (1–4), as well as methods of systematic coarse graining
(e.g., 5), are available to derive macroscopic equations from an underlying fine-scale descrip-
tion, underpinning many successful explicit closures in equilibrium and nonequilibrium statistical
mechanics (e.g., 6–12).

Increasingly, however, one encounters complex systems that can only be modeled with suffi-
cient accuracy at a microscopic, fine scale; in such cases, although one observes the emergence
of coarse-scale, macroscopic behavior in practice, modeling it directly may be impossible or im-
practical without simplifying assumptions that are hard to justify. Non-Newtonian fluid flow (13),
chemotaxis (14), and porous media transport (15) are but a few typical examples. Performing
macroscopic computational tasks with microscopic models is often infeasible: Direct simulation
over the full spatiotemporal domain of interest can be computationally prohibitive. Moreover,
additional modeling tasks, such as numerical bifurcation analysis, are often impossible to perform
on the microscopic model directly. A coarse steady state may not imply a steady state for the
fine-scale system as, for instance molecules do not stop moving when the gas density or pressure
equilibrate.

This article reviews a multiscale approach (16) to performing coarse-level computational tasks
for systems that are modeled at a (much) finer scale (for an earlier review, see 17). In many
cases, the explicit derivation of macroscopic equations can be circumvented by using short bursts
of appropriately initialized microscopic simulation. A key tool is the coarse time-stepper, dis-
cussed in Section 2, which implements a time step of an unavailable macroscopic model as a
three-step procedure: (a) lifting (i.e., the creation of initial conditions for the fine-scale model,
conditioned upon the coarse state at t∗), (b) simulation (using the fine-scale model, over a time
interval [t∗, t∗ + δt]), and (c) restriction [i.e., the observation (estimation) of the coarse state at
t∗ + δt].

Once a coarse time-stepper is available, one can build a direct bridge between fine-scale sim-
ulation and algorithms of traditional continuum numerical analysis, such as numerical bifurca-
tion analysis, optimization, control, and even accelerated coarse-scale simulation. Traditionally, a
coarse-level solver (which we call the outer solver) evaluates the required information (time deriva-
tives, the action of Jacobians) using explicit formulae from the coarse model. In the equation-free
approach, the outer solver uses appropriately initialized computational experiments with the fine-
scale (inner) simulator to obtain a closure on demand. The analogy with matrix-free methods in
numerical linear algebra (18) provides another reason for the term equation-free; it emphasizes
that the coarse-level equations are never constructed explicitly in closed form. In Section 3, we
discuss time-stepper-based coarse bifurcation analysis. We then show how to accelerate coarse
evolution computations using the fine-scale simulator in a small fraction of the space-time do-
main of interest, discussing coarse projective integration (Section 4) and patch dynamics schemes
(Section 5). Section 6 contains selected illustrative applications. Section 7 presents potential dif-
ficulties and an outlook for further research.
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PDE: partial
differential equation

The equation-free framework relates to, and borrows ideas from, a long history of (computa-
tional) multiscale approaches. Without aspiring to completeness, we mention Phillips and cowork-
ers’ (19–21) quasi-continuum methods, in which the quantities required in solving for macroscopic
fields are obtained by sampling atomistic computations over parts of the computational domain; re-
lated methods have also been developed (22–31). Öttinger and coworkers (32–35) provide another
example of multiscale/multilevel techniques, coupling continuum fields with stochastic evolution
of molecular orientation in complex fluids (see also 36). The optimal prediction methods of Chorin
and coworkers (37–39) provide a connection between microscopic/stochastic evolution and dy-
namics of macroscopic observables. A review (40) on extracting macroscopic dynamics [ranging
from the projection operation formalism of Mori and Zwanzig (41, 42) to modern reduction meth-
ods for stochastic differential equations (e.g., 43–47)] contains a discussion of the strong relation
between this approach and the coarse time-stepper we discuss below. In the adaptive mesh and
algorithm refinement method (48), a direct simulation Monte Carlo is embedded at the finest
level of an adaptive mesh refinement hierarchy. Many other ideas associated with the exploitation
of scale separation are gradually integrated into modern multiscale computations. A strong quali-
tative analogy exists, for example, between approximate inertial manifolds in deterministic partial
differential equations (PDEs) and the quasi-equilibrium states of Gorban, Karlin, and coworkers
(49–52); use of these ideas in nonequilibrium thermodynamics can be traced back to Ehrenfest &
Ehrenfest (53).

The so-called heterogeneous multiscale method provides a mathematically tractable way to
analyze methods of this type by first postulating an appropriate solver (what we call an outer solver)
for a macroscopic equation, which is then supplemented by microscopic simulations to obtain an
estimate of the unknown terms in the equation (such as the flux in a hyperbolic conservation law)
(54; for a recent review, see 55). Related ideas are also mentioned by Brandt (56).

2. THE COARSE TIME-STEPPER

Let us consider an abstract fine-scale (deterministic or stochastic) evolution law and corresponding
time-stepper,

∂tu(x, t) = f [u(x, t)], u(x, t + dt) = s [u(x, t), dt], (1)

where u(x, t) represents fine-scale state variables, x ∈ Dm and t are fine-scale independent vari-
ables, ∂t denotes the time derivative, and dt is the fine-scale time step. We assume that a (here,
deterministic) coarse model, denoted by

∂tU(X, t) = F [U(X, t)], (2)

conceptually exists but is unavailable in closed form. In Equation 2, U (X, t) represents coarse
state variables (observables), and X ∈ DM and t are coarse independent variables. The aim is to
construct a coarse time-stepper S̄ for the variables U (X, t),

Ū(X, t + δt) = S̄ [Ū(X, t), δt], (3)

where δt denotes the coarse time step, and the bars are introduced to emphasize that this is an
approximation of the exact time-stepper for Equation 2 because this equation is not explicitly
known.

We introduce two operators that make the transition between fine-scale and coarse variables.
We define a lifting operator,

μ : U(X, t) �→ u(x, t) = μ[U(X, t)], (4)
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Healing: process
(inherent in the
simulation of the
fine-scale model) that
quickly restores the
closure after lifting

MD: molecular
dynamics

which maps coarse to fine-scale variables, and its complement, the restriction operator,

M : u(x, t) �→ U(X, t) = M[u(x, t)], (5)

which can often be determined as soon as the coarse variables are known. For instance, when
the fine-scale model evolves an ensemble of many particles, the restriction typically computes
the first few moments of the distribution (density, momentum, and energy). To retain only the
slow evolution on the coarse level, one could represent coarse fields using empirical basis func-
tions (also known as Karhunen-Loève modes, proper orthogonal decomposition modes, or simply
principal components) (see 57, 58). Such basis functions (modes) are extensively used in nonlinear
identification and model reduction (for data compression, identification, bifurcation, and con-
trol and optimization tasks) (e.g., 59–63). Examples of equation-free computations with a proper
orthogonal decomposition–mode coarse description can be found in References 64 and 65.

The construction of the lifting operator is usually much more involved. Again considering a
particle model example, we need to define a mapping from a few low-order moments to initial
conditions for each particle. The assumption that an equation exists that closes at the level of these
low-order moments implies that higher-order moments become functionals of (or are slaved to) the
low-order ones on timescales that are fast compared with the overall system evolution; in some
sense, this principle also underpins quasi–steady state approximations (49, 66). Unfortunately,
these slaving relations are unknown (because the coarse evolution law is also unknown). Several
approaches have been suggested to address this problem. Initializing the higher-order moments
randomly introduces a lifting error, and one then relies on separation of timescales to ensure
that they relax quickly to functionals of the low-order moments (healing) (64, 67, 68; see also
69, 70). A detailed study of lifting errors when the microscopic model is a molecular dynamics
(MD) simulation of a dense fluid can be found in Reference 71. We note that this approach
may produce inaccurate results when δt is too small (72). A preparatory step, possibly involving
fine-scale simulations constrained to keep the coarse observables fixed, may be required; how
to accomplish this using only the fine-scale time-stepper has been explained and analyzed for
singularly perturbed systems (73–76) and for lattice Boltzmann problems (77, 78).

Given an initial condition for the coarse variables U(X, t∗) at t∗, the coarse time-stepper
(Equation 3) involves the following:

1. Lifting. Using the lifting operator (Equation 4), create fine-scale initial conditions ū(x, t∗)
(Equation 1), consistent with Ū(X, t∗).

2. Simulation. Use the fine-scale time-stepper (Equation 1) to compute the fine-scale state
ū(x, t∗) at t ∈ [t∗, t∗ + δt].

3. Restriction. Obtain the coarse state Ū(X, t∗ + δt) from the fine-scale state ū(x, t∗ + δt)
using the restriction operator (Equation 5).

Assuming δt = kdt, this can be written as

Ū(X, t + δt) = S̄ [Ū(X, t), δt] = M(s k{μ[Ū(X, t)], dt}), (6)

where the superscript on s denotes the k fine-scale time steps. If the fine-scale model is stochastic,
multiple replica simulations, using an ensemble of fine-scale initial conditions, may be needed to
obtain sufficiently low-variance results.

Let us consider as a simple, illustrative example u = (u1, u2)T that satisfies the fine-scale
equation

du1

dt
= −u1 − u2 + 2,

du2

dt
= 1

ε

(
u3

1 − u2
)
. (7)
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Figure 1
(a, b) Coarse time-stepper applied to Equation 7 using δt = 10ε = 0.1 and U(0) = −1. (a) The lifted
solution (blue solid line) u(t) plotted in the (u1, u2) phase space. At times t = nδt, the solution is restricted and
then lifted again, which here amounts to setting u2(nδt) = 1. The slow manifold is shown as a dashed red
line. (b) The time derivative of the restricted solution M[u(nδt + s )] as a function of time t = t (blue solid
line), as well as the time derivative of the exact coarse solution U(t) = u1(t) (red dashed line). (c, d ) Coarse
projective integration. Intervals of full simulation are in blue, purple dotted lines represent projections in
time, and the red dashed line is the full fine-scale simulation. (c) A phase space view. Whereas u1 is projected
in time corresponding to the estimated time derivative, u2 is reset during the lifting so that the new initial
condition is off the slow manifold. (d ) The results of coarse projective integration with �t = 4δt.

RPM: recursive
projection method

As the coarse variable, we consider U = M(u) = u1, and we define the lifting as μ(U ) = (U, 1)T .
Figure 1 shows a simulation using the coarse time-stepper. The solution of Equation 7 rapidly
moves to the slow manifold u2 = u3

1 for any initial data when ε � 1. The coarse time-stepper
solution agrees better with the full solution (or its restriction) when ε is small or δt is large.

3. COARSE BIFURCATION ANALYSIS

Historically, the coarse time-stepper was first used to perform equation-free bifurcation com-
putations. This was motivated by the recursive projection method (RPM) (79), a computational
superstructure (wrapper) that enables the computation of bifurcation diagrams using a legacy sim-
ulation code. In the equation-free context, we consider this computational wrapper as the outer
solver; the coarse time-stepper enables the computation using a fine-scale inner solver.
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Let us consider the coarse equation and its coarse time-stepper

∂tU = F (U, λ), Ū n+1 = S̄(Ū n, λ; �t), (8)

where we have included explicit dependence on one or more parameters λ. We are interested
in the asymptotic solutions (steady states, periodic orbits) of Equation 8 and their stability and
dependence on λ.

A coarse steady state can be computed as a fixed point of the coarse time-stepper,

Ḡ(Ū, λ; �t) = Ū − S̄(Ū, λ; �t) = 0. (9)

This nonlinear system can be solved via Picard functional iterations (time-stepping until steady
state is reached). However, convergence may be slow and only locates stable stationary states.
Alternatively, one can solve Equation 9 using a Newton-Raphson procedure,

Ū (k+1) = Ū (k) + dŪ (k). (10)

Here, the correction dŪ (k) is the solution of the linear system

ḠU
(
Ū (k), �t

)
dŪ (k) = [

I − S̄U
(
Ū (k), �t

)]
dŪ (k) = −Ḡ

(
Ū (k), �t

)
, (11)

where ḠU(Ū (k), �t) and S̄U(Ū (k), �t) denote the linearization of Ḡ(Ū, �t) and S̄(Ū, �t), respec-
tively, around Ū (k), and we have again suppressed the dependence on λ for ease of notation.
Because S̄U(Ū (k), �t) is the linearization of a coarse time-stepper, we do not have its explicit
formula; approximating the full Jacobian is computationally expensive.

Shroff & Keller (79) proposed RPM as a compromise between Newton-Raphson and Picard
iterations, when only a legacy time-stepper is available. RPM projects the Jacobian onto the
(adaptively identified, typically low-dimensional) eigenspace corresponding to the slowly varying
modes. In this subspace, a Newton iteration is performed; in its orthogonal complement, Picard
iterations converge fast enough. The dominant eigenvalues, and hence the stability information,
are directly available as byproducts of the computation. A generalization, the Newton-Picard
method, was developed to compute periodic solutions (80). These methods are efficient if the
dimension of the slow (Newton) subspace is low; this condition is typically satisfied for dissipative
PDEs that arise in modeling reaction and transport.

The coarse time-stepper immediately enables continuation/bifurcation computations at the
coarse level, even when varying parameters of the fine-scale model, whose influence on the coarse
level is difficult to assess directly. The procedure is illustrated in Figure 2a. Equation-free com-
putations using RPM have been reported in, e.g., References 16, 64, 67, 81, 83, and 84.

Let us consider a standard lattice kinetic Monte Carlo model of catalytic CO oxidation on a
square lattice (67), consisting of six elementary steps:

COgas + (∗)i → COads,i,

O2,gas + (∗)i + (∗) j → Oads,i + Oads,j,

COads,i → COgas + (∗)i ,

COads,i + Oads,j → CO2,gas + (∗)i + (∗) j ,

COads,i + (∗) j → (∗)i + COads,j,

Oads,i + (∗) j → (∗)i + Oads,j. (12)

Here, (∗)i,j represent nearest-neighbor sites on a square lattice, and lateral (repulsive or attractive)
interactions between adsorbed CO are taken into account. This model can be approximated at a
coarser level via two ordinary differential equations for the coverages of CO and O2 (a mean field
approximation) or by also considering fast pair probabilities (a quasichemical approximation) (67).
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Figure 2
(a) Schematic of a coarse time-stepper-based bifurcation analysis. IC, initial condition; PDE, partial differential equation; RPM,
recursive projection method. (b) Coarse bifurcation diagram (C-KMC) of the CO coverage of system (Equation 12) with respect to β

(a parameter that contains the oxygen partial pressure) compared to its mean field (MFA) and quasichemical (QCA) approximations.
Triangles give the long time average of full kinetic Monte Carlo simulations. Simulation details and parameters can be found in
Reference 67. (c) Schematic view of a dynamic renormalization procedure using the coarse time-stepper. Starting with a probability
density function (PDF) coarse description, through its cumulative density function (CDF), we lift to particle realizations; after
fine-scale evolution, the coarse description is obtained and appropriately rescaled. (d ) Application to the two-dimensional molecular
dynamics simulation of self-diffusion, starting from a coarsely one-dimensional piecewise linear CDF. (Inset) A snapshot around the
center of the domain at t = 300 (top panel ) and the result of its restriction, rescaling, and lifting (bottom panel ). Simulation details can be
found in Reference 82.
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Figure 2b shows a bifurcation diagram, comparing the stationary states obtained via the coarse
bifurcation analysis for Equation 12 with those of the two explicit closure approximations, which
clearly become inaccurate. Lifting of the coverages to individual atoms should be done in a way
that correctly initializes the (implicitly slaved) pair probabilities. To this end, a preparatory fast
diffusion equilibration step was performed that temporarily ignores the reactions in Equation 12
(67).

For problems with continuous symmetries, one can also compute coarse self-similar solu-
tions, such as traveling waves/exploding solutions, as fixed points of a coarse time-stepper that
incorporates an appropriate shifting/rescaling of space, time, and/or the coarse solution (see
Figure 2c,d ). Following a template-based approach (85), one can perform a shifting/rescaling
after each coarse time step; this gives the coarse time-stepper of an unavailable cotravel-
ing/renormalized coarse evolution equation. Coarse traveling speeds/similarity exponents are a
byproduct of the procedure upon convergence (82, 83, 86, 87; see also 88). An illustrative ex-
ample of outer coarse self-similar diffusion dynamics based on inner MD (82) is depicted in
Figure 2c,d.

An alternative approach to Newton-Picard methods (which relies less on user-supplied param-
eters) involves solving the linear system (Equation 11) using an iterative method, such as a Krylov
method. One can estimate matrix-vector products with the Jacobian as

[
I − S̄U(Ū, �t)

]
v ≈ v − S̄(Ū + εv, �t) − S̄(Ū, �t)

ε
(13)

at a cost much lower than the construction of the full Jacobian. Iterative linear algebra algorithms,
in their matrix-free form, are remarkably naturally suited for the equation-free framework. If
required, coarse stability information can be obtained afterward, through an outer matrix-free
eigensolver (89).

The convergence rate of Krylov methods (and hence the required number of matrix-vector
products) depends heavily on the spectral properties of the (explicitly unavailable) system matrix in
Equation 11. For rapid convergence, the eigenvalues should be clustered, for example, around one
(90). Because S̄(Ū, �t) is a time-stepper, most of its eigenvalues are usually within the unit circle;
the eigenvalues of ḠU(Ū, �t) can then lie arbitrarily close to zero. Preconditioning is therefore
necessary to bound the eigenvalues away from zero. We define a preconditioning matrix M(Ū, �t)
and replace the linear system (Equation 11) with

M
(
Ū (k), �t

)−1 ḠU
(
Ū (k), �t

)
dŪ (k) = −M

(
Ū (k), �t

)−1 Ḡ
(
Ū (k), �t

)
. (14)

Ideally, M(Ū, �t) is a good approximation of the system matrix, for which an efficient (direct)
solver is available. In the context of Jacobian-free Newton-Krylov methods, both standard precon-
ditioning techniques, such as incomplete LU factorization and multigrid, and application-specific
physics-based preconditioners have been proposed (see 91 for an overview).

In the equation-free framework, individual Jacobian elements are not available, so precondi-
tioning techniques relying on algebraic manipulation cannot be directly applied. Several ideas
have been proposed. The first is to construct a preconditioner based on a time-stepper for an ap-
proximate coarse model. A numerical convergence study with this equation-assisted idea has been
performed (86), and an application to a stochastic reaction-diffusion problem was presented (92).
For elliptic operators, preconditioning using different, simpler operators was originally used in
References 93–95 (and references therein). An equivalent operator theory was introduced to ana-
lyze such preconditioning (96). An extension of Manteuffel & Otto’s (97) analysis to the equation-
free case is presented in Reference 98.
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Coarse projective
integration: a class of
outer algorithms that
accelerate evolution of
the coarse state
exploiting the coarse
time-stepper

Gap-tooth scheme:
outer algorithm that
confines fine-scale
simulations to a
number of small
spatial subdomains of
the macrodomain of
interest, approximately
linked through coarse
interpolation

Patch dynamics:
combination of coarse
projective integration
and gap-tooth schemes
that confines fine-scale
simulations to a small
subset of the
space-time domain
(patches)

4. COARSE PROJECTIVE INTEGRATION

In this section, we review methods to accelerate the simulation of Equation 2 over large (macro-
scopic) time intervals. We let �t � δt be a large time step (commensurate with the slow coarse
dynamics). In this case the outer solver is a time integrator for Equation 2 (64).

Ū n ≈ Ū(n�t) denotes the numerical approximation of the coarse solution U (t), and Ūk,n

denotes the iterates of the coarse time-stepper at tk,n = n�t+kδt (Ū 0,n ≡ Ū n). (Here we do not lift
the coarse solution at each of the k coarse time steps because a corresponding microscopic state is
seamlessly available inside the coarse time-stepper.) We can then compute Ū n+1 via extrapolation,
e.g.,

Ū n+1 = Ūk,n + (�t − kδt)F̄ (Ūk,n), (15)

where F̄ approximates F̄ , e.g., via finite differencing:

F̄ (Ūk,n) := Ūk+1,n − Ūk,n

δt
≈ dŪ(tk,n)

dt
= F̄

[
Ū(tk,n)

] ≈ F̄ (Ūk,n). (16)

The method in Equations 15 and 16 is called coarse projective forward Euler, and it is the
simplest instantiation of this class of coarse integration methods. The procedure is illustrated for
the example (Equation 7) in Figure 1c,d.

The first k steps with the coarse time-stepper serve two purposes. First, they reflect that, at the
fine scale, we must allow for healing of the lifting errors (those that perturb the fine-scale higher-
order moments) before we can start estimating coarse time derivatives. Second, in Equation 15,
extrapolation is performed starting from Ūk,n. This is particularly useful if the coarse equation
contains both fast and slow modes; in that case, if the number k of inner steps is chosen large
enough, one can take a large projective step, practically limited by stability restrictions on the slow
modes only (99). If the extrapolation is performed starting from Ū n as in the (closely related) work
(100, 101), the corresponding time step is limited by the stability properties of forward Euler for
the full coarse equation (for an accuracy analysis, see 102).

Higher-order versions of Equation 15 can be constructed in several ways. A straightforward
idea is to use polynomial extrapolation (64). Adams-Bashforth or Runge-Kutta implementations
of Equation 15 are also possible (103, 104), as are implicit versions (partially discussed in 99).

Projective integration is especially suited for problems with a large gap in their eigenvalue
spectrum (see 99). A wide range of methods to obtain extended stability regions for parabolic
problems [with eigenvalues along the (negative) real axis] exists (e.g., see 105, and references
therein). Several extensions to projective integration methods have been presented for such cases.
Telescopic projective integration (106) is a recursive version of the method: The coarse projective
integrator (Equation 15) itself is now the inner integrator, around which a new projective integrator
is wrapped. Another idea (based on 107) trades accuracy for stability by designing a multistep state
extrapolation method using the last points of each sequence of inner steps (108).

5. PATCH DYNAMICS

Coarse projective integration uses short time simulations by the fine-scale inner solver to explore
long-time intervals at the coarse level. By analogy, spatially localized simulations performed in a
number of small domains (teeth) separated by gaps can be appropriately linked through interpo-
lation to enable the exploration of extended spatial systems at the coarse level (for a discussion
of the resulting gap-tooth scheme, see 17, 109, 110). Here we directly proceed to describe the
combination of gap-tooth with coarse integration: patch dynamics.
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FD: finite difference

BC: boundary
condition

For simplicity, we consider the coarse model (Equation 2) to be a PDE in one space dimension
(so X = x),

∂tU(x, t) = F
[
U(x, t), ∂xU(x, t), . . . , ∂d

x U(x, t)
]
, (17)

where ∂k
x denotes the k-th spatial derivative. Generalization to several space dimensions is

straightforward. We assume the order d of Equation 17 is known; an algorithm to obtain
this information using only fine-scale simulation is given in Reference 111. Given Equation
17, one can write its finite-difference (FD) method-of-lines discretization on a regular mesh
as

∂tUi (t) = F{Ui (t), D1[Ui (t)], . . . , Dd [Ui (t)]}, i = 0, . . . , N, (18)

where Ui (t) ≈ U(xi , t), xi ∈ 	(�x) := {0 = x0 < x1 = x0 + �x < · · · < xN = 1}, and Dk[Ui (t)]
denotes a suitable FD approximation for the k-th spatial derivative. Patch dynamics starts from
an analogy with the method of lines (17). To facilitate exposition and convergence analysis, we
formulate it as a time discretization of the scheme (Equation 18) (112); we can take advantage of the
numerical analysis results in Reference 54 for the heterogeneous multiscale method. Discretizing
in time, using forward Euler here for simplicity,

U n+1 = S(U n; �t) = U n + �t F (U n), (19)

where U n = [U0(tn), . . . , UN(tn)]T and �t denotes the macroscopic time step. The dependence of
F (Un) on the spatial derivatives is suppressed for notational convenience.

We define a small interval (box, tooth) of size h � �x around each (coarse) mesh point xi and
define the discrete solution Ū(t) = [Ū0(t), . . . , ŪN(t)]T ∈ R

N+1 as the spatially averaged restriction
of the fine-scale solution in each small interval,

Ūi (t) = Sh[M(u)](xi , t) = (1/h)
∫ xi +h/2

xi −h/2
M(u)(ξ, t) dξ, i = 0, . . . , N. (20)

In higher space dimensions, these intervals become boxes around the coarse mesh points, a term
that we also use here. Given an initial condition for Ū(t) at time t∗, a coarse time-stepper is
constructed as follows:

1. Lifting. Use the lifting operator (Equation 4) to create initial conditions ūi (x, t∗) for the
microscopic model (Equation 1) in each small box around the mesh point xi, consistent with
the spatial profile of the macroscopic solution.

2. Simulation. Use Equation 1 to compute the microscopic state ūi (x, t) in each box for t ∈
[t∗, t∗ + δt] employing appropriate boundary conditions (BCs).

3. Restriction. Obtain the spatially averaged macroscopic state Ū n+δ
i in each box from the

microscopic state ūi (x, t + δt) using the restriction operator (Equation 5).
4. Projective step. Estimate the time derivative at time tn, e.g., as

F̄ (Ū n; h, δt) = Ū n+δ
i − Ū n

δt
(21)

and use with a time integration method of choice, e.g., forward Euler,

Ū n+1 = Ū n + �t F̄ (Ū n; h, δt). (22)

Initial conditions in each box result from a local Taylor expansion, with spatial derivatives
approximated via FD on the macroscopic grid, using the (given) box averages Ūn

i , i = 0, . . . , N,
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at mesh point xi and time tn,

ūi
ε(x, tn) =

2∑
k=0

Dk
i (Ū n)

(x − xi )k

k!
. (23)

The coefficients Dk
i (Ū n), k > 0 are the same FD approximations for the k-th spatial derivative

that would be used in the method-of-lines discretization (Equation 18), whereas D0
i (Ū n) is chosen

such that

1
h

∫ xi +h/2

xi −h/2
ūi

ε(ξ, tn)dξ = Ūn
i . (24)

Clearly, one must have information about the nature of the coarse equation; for example, if the
behavior on the coarse scale is advection dominated, one should use upwind approximations for D1.
Lifting now becomes more involved because, in addition to the average value of the macroscopic
unknowns in the box, we also need to initialize some approximation of the spatial derivatives of
the macroscopic solution to correctly capture the dynamics of Equation 17. For noninteracting
particles, one could generate initial particle positions via the inverse cumulative density function
(65, 103, 113, 114). (For an MD example, we refer the reader to Reference 71.)

An additional (and crucial) difficulty is the imposition of BCs on each small box because each
box is supposed to mimic local evolution of the fine-scale problem as if it were embedded in
a larger domain. Indeed, patch dynamics can be thought of as a hybrid algorithm (48, 115):
Each box evolves as if it were linked to a continuum description, yet this description is ob-
tained by interpolation based on nearby boxes. Several strategies have been proposed. First, one
could impose BCs that approximate the behavior of the macroscopic solution in the larger do-
main; for diffusion problems, based on physical considerations, one achieves this by constraining
the macroscopic gradients at the box edges (17, 109). Such BCs, however, may not always be
available/feasible for a given microscopic simulator; an alternative, control-based strategy has
been proposed (25). Another idea is to introduce buffer regions of size H (see Figure 3); for a
short enough simulation and large enough H, the artifacts due to essentially arbitrary BCs may

... ...

h

∆t

H

0.0

0.2

0.4

0.6

u −1
0

1
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x
0

1
2

3
30tx

i – 1

∆x

x
i

x
i + 1

h

a b

Figure 3
(a) Schematic representation of the gap-tooth scheme with buffer boxes. An h-sized box is chosen around each macroscopic mesh point
xi; a local Taylor approximation provides initial conditions. Simulation is performed inside the larger (buffer) boxes of size H with
(arbitrary) boundary conditions (BCs). (b) Burgers’ equation simulation using time-dependent Dirichlet BCs at teeth boundaries
(for simulation details, see 110).
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not affect the fine-scale simulation in the inner, h-sized region of interest. We refer readers to
References 112 and 116 for a numerical analysis of patch dynamics for homogenization problems
that demonstrates how H scales with δt. For diffusion problems H = O(

√
δt), and for advection-

dominated problems, one needs to choose H = O(δt). Based on holistic discretizations (117),
a third proposed approach retains the possibility of imposing standard patch BCs while avoid-
ing buffer regions (110, 118). This is achieved by updating the BCs for each patch after every
fine-scale time step; the values for these BCs are obtained via center manifold theory (e.g., 119).
Figure 3b shows such a gap-tooth computation of the Burgers’ equation (for details, see the review
in 120).

6. SELECTED APPLICATIONS

In this section, we discuss three applications in more detail. They have been selected to illus-
trate both the scope of the approach and the computational issues that arise in any concrete
problem.

6.1. Lattice Boltzmann for Bubbly Flow

Coarse steady states of an inner lattice Boltzmann simulator for the constant speed rise of a gas
bubble in a liquid (121) have been computed using an outer RPM solver (84, 122). The state space of
the lattice Boltzmann model consists of a discrete set of distribution functions, corresponding to the
density of particles with a given velocity (123). The coarse variables are the lowest-order moments
over the velocity space (here density and momentum fields). A lifting operator distributes a given
density over each of the discrete velocities with prescribed momenta; higher-order moments could
be initialized randomly without crucially affecting the computations. Figure 4 shows the coarse
bifurcation diagram from linking the outer RPM solver with pseudo-arc-length continuation as
the Eötvös number varies; coarse eigenvalues were obtained as a byproduct upon convergence.
Notice that the coarse problem is solved without invoking surface tension—stresses in the interface
region are accurately captured by the short inner lattice Boltzmann simulation itself (see 84 for
simulation details and parameters).

2
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Figure 4
Coarse bifurcation diagram for a gas bubble rising in a liquid. (a) Total mass on the centerline versus Eötvös
number. The solid line corresponds to stable steady states, whereas the dashed line represents unstable
steady states. The filled circle depicts the onset of oscillations (a Hopf bifurcation). The recursive projection
method parameter m represents the dimension of the slow subspace. Coarse slow eigenspectrum (b) just
before and (c) after the Hopf bifurcation.
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GCMC: grand
canonical Monte Carlo

6.2. Water in Carbon Nanotubes

An MD simulation of water filling and emptying a carbon nanotube has been considered (124)
(see Figure 5a). Conventional MD simulations showed that, for certain values of the interaction
strength λ between the carbon atoms and water, the system exhibits biphasic behavior (switching
between filled and empty states on a nanosecond timescale). To study this, we constructed a
coarse time-stepper over a time horizon of 1 ps for the occupancy of (the number of water
molecules inside) the carbon nanotube, N. The lifting (construction of an MD initial condition
with a given occupancy N ) was done via a constrained MD simulation over 15 ps, in which
an artificial harmonic bias potential steered the occupancy toward a target value; for variance
reduction, ensemble averaging was performed over 50 replicas. When assuming effective diffusive
dynamics for N, the inner simulator can be used to estimate local drift and diffusion coefficients
of the corresponding Fokker-Planck equation, allowing the reconstruction of an effective free
energy surface, also shown in Figure 5c. Ignoring a weak dependence of the effective diffusion
coefficient on N, metastable states correspond to stable fixed points of the coarse time-stepper
for the chosen time step; the transition state is an unstable fixed point. Figure 5b shows a coarse
bifurcation diagram of these fixed points (alternatively, of the effective free energy surface features)
with respect to the interaction strength λ. Simulation details and parameter values are given in
References 124–126.

6.3. Micelle Formation

A grand canonical Monte Carlo (GCMC) simulation of the Larson model (127) for micelle for-
mation has been considered (128). Amphiphile and solvent molecules were modeled as a chain
of beads and a single bead, respectively, and each bead occupied a site on a three-dimensional
cubic lattice. The connected beads of an amphiphile were located on nearest-neighbor sites along
the vectors (0,0,1), (0,1,1), and (1,1,1) and their reflections along the principal axes, resulting in
a coordination number of 26. Two types of beads were considered: hydrophobic tail T and hy-
drophilic head H. The solvent beads were taken to be equal to the head beads. Details of the
interactions among the beads, system, and simulation parameters can be found in Reference 128.
A representative snapshot of a simulation is shown in Figure 6a.

As micelles formed and broke in the simulation, the physical properties of a cluster, such as
its radii of gyration and energy, appeared to quickly become slaved to the cluster size; it was
therefore assumed (and numerically verified) that cluster size ψ was a good coarse variable (129).
The lifting operator (which maps coarse states ψ to GCMC realizations) used a database of
cluster structures kept from long simulation. This system exhibited diffusive dynamics in ψ (129),
again allowing the approximation—using the inner simulator—of an effective free energy surface
from the corresponding Fokker-Planck equation (see Figure 6b). The free energy barrier, which
corresponds to an unstable fixed point of the coarse time-stepper, was located using coarse reverse
projective integration (Figure 6c) (see also 103). This again assumed weak state dependence of the
effective diffusion coefficient (see Figure 6b). Forward simulation using the inner GCMC code
and restriction to ψ were followed by a large backward projective step, along the locally estimated
drift of the effective Fokker-Planck equation, moving up the effective free energy surface. Owing
to its peculiar stability properties, reverse projective integration can locate unstable steady states
with fast decaying stable modes and slowly growing unstable ones (130). The coarse variable ψ

becomes less successful in describing dynamics when it takes low values; Figure 6d suggests that
a second coarse variable (such as a cluster energy density) may be required there.

www.annualreviews.org • Equation-Free Multiscale Computation 333

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
9.

60
:3

21
-3

44
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

B
ri

st
ol

 o
n 

11
/0

8/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV373-PC60-16 ARI 7 March 2009 12:2

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

6

7

λ

N

A

B

F

C G

E

D

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0.6  0.7  0.8  0.9  1.0

λ

N

0 1 2 3 4 5 6 7
0

10

20

30

N

βG
(N

)

βG
(N

)

βG
(N

)

0 1 2 3 4 5 6 7 8
0
5

10
15
20
25

N

A

B

F

G

0 1 2 3 4 5 6 7
N

0
2
4
6
8

10
12

E

D

C

13.5 Å ≈2 Å ≈2 Å 

CNT

Vestibule Vestibule

a

b

c

Figure 5
(a) Schematic of the
carbon nanotube
(CNT)-water system
as a cylinder
surrounded by water
molecules, showing
vestibules at the
cylinder ends,
introduced to allow
smooth variation in
the occupancy.
(b) Coarse bifurcation
diagram. Solid filled
squares correspond to
(stable) fully filled
(N > 5) or empty
(N < 1) states. Open
circles correspond to
(unstable) partially
filled states. The
turning points are
indicated with filled
diamonds. A number
of representative
structures are shown
along the dashed
vertical lines. (Inset)
The effective
bifurcation diagram
obtained through
histogram
reweighting. (c) The
effective free energy
surfaces corresponding
to the dashed vertical
lines in panel b.
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Figure 6
(a) Snapshot of a micelle-forming system. Hydrophobic tail beads are shown in red, and hydrophilic head beads are shown in blue
(solvent beads are not shown). (b) Free energy surface obtained from equilibrium simulations (solid green line), a kinetic approach (dashed
black line), and an approximation that neglects the weak spatial dependence of the diffusion coefficients depicted below. (c) Coarse
reverse projective integration starting at different initial values and for different method parameters. The restrictions of the short
forward simulations are represented by the solid line, and the backward coarse projections are represented by the dashed line. MC,
Monte Carlo. (d ) A two-dimensional effective free energy surface, suggesting the need for additional coarse variables at low cluster
sizes. Simulation details can be found in References 128 and 129.

7. CONCLUSIONS AND OUTLOOK

Above we review an equation-free framework for modeling and computation in complex/multiscale
systems that bypasses the derivation of macroscopic evolution equations when these equations con-
ceptually exist but are not available in closed form. Established continuum numerical algorithms
motivate the construction of computational wrappers around fine-scale simulators via a lift-run-
restrict procedure that enables the performance of system-level tasks (such as bifurcation and
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stability analysis, control, optimization, and even accelerated simulation over extended spatio-
temporal domains). Ultimately, the framework is an input-output one: Information traditionally
obtained by evaluating a coarse-level model is extracted on demand from short bursts of appropri-
ately initialized simulations with the fine-scale code. Significant progress has been made over the
past years in developing and analyzing projective and patch dynamics schemes and exploiting the
properties of the coarse time-stepper to perform system-level tasks (efficient numerical bifurcation
analysis, coarse dynamic renormalization).

Applications of this framework are diverse: nematic liquid crystal rheology (68), heterogeneous
population dynamics (131, 132), agent-based models and network dynamics (133, 134), bacterial
chemotaxis (114), neural oscillator activity (135), stellar cluster collapse (136), stochastic dynamics
of gene regulatory networks (137), structural transitions in crystals (138), optimization and control
(68, 139), and more.

Clearly, when accurate explicit equations exist, they should be used. In their absence, when
equation-free computations become necessary, approximate closed equations can still increase ef-
ficiency as preconditioners—in equation-assisted computations. When some degree of analytical
coarse graining can be achieved, equation-free algorithms can be wrapped around this coars-
est accurate model, hopefully enhancing its scope. As our GCMC example illustrates, the inner
simulator does not need to model physical time evolution: Dynamics representing, for instance,
sampling of an equilibrium distribution may also be accelerated.

Although significant progress has been made, several issues require further attention. For in-
stance, although the effects of the lifting operator on the accuracy and efficiency of the methods
are understood for simple model problems (e.g., 75–77), the development of efficient and system-
atic algorithms for initializing fine-scale simulations conditioned on coarse states continues to be
a truly challenging area of research.

When experience or physical intuition is insufficient for the detection of appropriate coarse
variables, one appeals to modern data-mining/manifold learning techniques, such as Isomap (140)
or diffusion maps (141–144) (see 137 for an example of variable-free equation-free computations
using a diffusion map approach, with the coarse variables themselves also obtained from fine-scale
simulation). Combining the detection of the right variables with the ability to perform differential
operations on them forms the basis for a type of calculus of complex systems.

Noise and its treatment are ubiquitous in the formulation and the analysis of the framework
we discuss above, from the robustness of traditional algorithms (145) and the variance-reduced
local estimation of quantities for coarse numerical computation (34) to the identification of effec-
tive stochastic models (40, 146) and hypothesis testing for the closure level or the nature of the
unavailable equations (111). This review does not do justice to these important issues, on which
we also expect extensive future research.

We conclude with two directions in which this approach may have significant impact.
The first is the quantitative exploration of individual-based models in socioeconomic sciences;
here, tools from statistical mechanics are already making a difference (e.g., 147), and we ex-
pect multiscale methods, such as the ones described above, to enhance this trend. The sec-
ond area involves equation-free laboratory experimentation. Today one can increasingly find
experimental systems in which enough control/actuation authority exists for initial/boundary
conditions to be easily physically implemented [e.g., the construction of configurations of
colloidal particles with prescribed statistics using optical tweezers (148)]. In such systems,
equation-free computational protocols in principle can translate to laboratory experimental de-
sign; optimization protocols (from traditional response surface approaches to genetic algorithms)
are increasingly used experimentally in recent years (e.g., 149, 150). Recursive design of se-
quences of short experiments may allow the laboratory implementation of many numerical
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algorithms currently used only on computer models—a dream of doing mathematics directly
on nature.

SUMMARY POINTS

1. Many complex physical/engineering problems are modeled at space and time scales dras-
tically finer than the (macroscopic, coarse) level at which experimental observations are
typically made and at which practical tasks such as prediction, design, and optimization
need to be performed. Full simulation with these fine-scale models cannot hope to ad-
dress such practical tasks. Traditionally, closures are obtained (through experiment and
observation or through rigorous mathematics) to formulate useful models at the coarse
level directly.

2. We present an approach that circumvents the explicit derivation of such closures and
macroscopic models. The closure is obtained on demand through brief simulation of the
fine-scale model over relatively short space and time scales. The approach is a design
of (computational) experiments, using the fine-scale model as an experiment that can be
initialized, executed, and observed at will.

3. In this framework, traditional numerical algorithms, from initial value solvers and spatial
discretization techniques to contraction mappings and (especially) iterative matrix-free
linear algebra, dictate the construction of computational wrappers: outer algorithms that
perform coarse modeling tasks by designing, executing, and processing the results of
computational experiments with an inner fine-scale solver.

4. Lifting operators that create fine-scale states consistent with coarse observations (a one-
to-many procedure) and restriction operators that (conversely) coarsely observe fine-
scale states are crucial elements of the framework. They correspond to initializing an
experiment and observing/taking measurements from it. As our selected applications
show, systematic lifting can be a computationally intensive process, for which problem-
specific insight is often invaluable.

5. The scope of the framework (in terms of the type of outer solvers developed, the na-
ture of the inner solvers, and the possible applications) is broad, as illustrated in our
selected applications. It naturally brings together and functionally integrates elements of
fine-scale/atomistic simulation, continuum numerical analysis, identification and control,
statistics, and hypothesis testing.

FUTURE ISSUES

1. Before the unavailable equation is solved, we need to be able to answer certain qualitative
questions that crucially affect the algorithms and that are much easier to answer with
closed-form models: What is the correct level at which a model can usefully close? Is the
unavailable equation a PDE (of what order?), a stochastic PDE, or an integral equation? Is
it Hamiltonian or a conservation law? Does it exhibit space or scale symmetry? Tools for
answering these questions based on fine-scale simulation results should be systematically
developed.
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2. What are the right variables in terms of which the macroscopic model can be written?
For many problems, they are known by experience and long experimentation, physi-
cal intuition, or rigorous mathematical derivation. Yet there is an increasing need to
automatically extract such variables from available observations and to even design ex-
perimentation (possibly computational) for data acquisition with this purpose in mind.
The link to modern data-mining/manifold learning techniques is a crucial one, and lift-
ing/restriction based on such variables should be systematically studied.

3. Error analysis for the type of algorithms we describe (including a posteriori estimates) is at
its infancy, especially for atomistic inner solvers. Issues of automatic adaptive refinement
in space and time, adaptively controlled variance reduction of noise (linking to modern
data-estimation techniques), and on-the-fly verification of the level of closure all are
important research subjects. Numerical analysts are already studying several aspects (e.g.,
see the work of W.E, B. Engquist, and coworkers).

4. We believe this type of work may have a transformative impact on the individual-based
modeling of social/economic phenomena, enabling a higher level of quantitative study.

5. We envision that, for physical systems in which enough spatiotemporally resolved sensing
and actuation authority exists to initialize at will, the wrapper algorithms (computational
experiment design protocols) we discuss may become laboratory experimental design
protocols. One day, one might be able to perform computer-assisted mathematical tasks
directly on nature through the same algorithms used today to perform these tasks on
models.
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51. Gorban AN, Karlin IV, Ilg P, Öttinger HC. 2001. Corrections and enhancements of quasi-equilibrium

states. J. Non-Newton. Fluid Mech. 96:203–19
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Özgür Birer and Martina Havenith � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 263

Quantum Coherent Control for Nonlinear Spectroscopy
and Microscopy
Yaron Silberberg � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 277

Coherent Control of Quantum Dynamics with Sequences of Unitary
Phase-Kick Pulses
Luis G.C. Rego, Lea F. Santos, and Victor S. Batista � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 293

Equation-Free Multiscale Computation: Algorithms and Applications
Ioannis G. Kevrekidis and Giovanni Samaey � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 321

Chirality in Nonlinear Optics
Levi M. Haupert and Garth J. Simpson � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 345

Physical Chemistry of DNA Viruses
Charles M. Knobler and William M. Gelbart � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 367

Ultrafast Dynamics in Reverse Micelles
Nancy E. Levinger and Laura A. Swafford � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 385

Light Switching of Molecules on Surfaces
Wesley R. Browne and Ben L. Feringa � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 407

Principles and Progress in Ultrafast Multidimensional Nuclear
Magnetic Resonance
Mor Mishkovsky and Lucio Frydman � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 429

Controlling Chemistry by Geometry in Nanoscale Systems
L. Lizana, Z. Konkoli, B. Bauer, A. Jesorka, and O. Orwar � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 449

Active Biological Materials
Daniel A. Fletcher and Phillip L. Geissler � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 469

Wave-Packet and Coherent Control Dynamics
Kenji Ohmori � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 487

Indexes

Cumulative Index of Contributing Authors, Volumes 56–60 � � � � � � � � � � � � � � � � � � � � � � � � � � � 513

Cumulative Index of Chapter Titles, Volumes 56–60 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 516

Errata

An online log of corrections to Annual Review of Physical Chemistry articles may be
found at http://physchem.annualreviews.org/errata.shtml

Contents ix

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
9.

60
:3

21
-3

44
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

B
ri

st
ol

 o
n 

11
/0

8/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.


	Annual Reviews Online
	Search Annual Reviews
	Annual Review of Physical Chemistry
Online
	Most Downloaded Physical Chemistry
Reviews
	Most Cited Physical Chemistry
Reviews
	View Current Editorial Committee
	Annual Review of Physical Chemistry
Errata

	All Articles in the Annual Review of Physical Chemistry, Vol. 60 
	Sixty Years of Nuclear Moments
	Dynamics of Liquids, Molecules, and Proteins Measured with Ultrafast 2D IR Vibrational Echo Chemical Exchange Spectroscopy
	Photofragment Spectroscopy and Predissociation Dynamics of Weakly Bound Molecules
	Second Harmonic Generation, Sum Frequency Generation, and χ(3):Dissecting Environmental Interfaces with a Nonlinear Optical SwissArmy Knife
	Dewetting and Hydrophobic Interaction in Physical and Biological Systems
	Photoelectron Spectroscopy of Multiply Charged Anions
	Intrinsic Particle Properties from Vibrational Spectra of Aerosols
	Nanofabrication of Plasmonic Structures
	Chemical Synthesis of Novel Plasmonic Nanoparticles
	Atomic-Scale Templates Patterned by Ultrahigh Vacuum Scanning Tunneling Microscopy on Silicon
	DNA Excited-State Dynamics: From Single Bases to the Double Helix
	Dynamics of Light Harvesting in Photosynthesis
	High-Resolution Infrared Spectroscopy of the Formic Acid Dimer
	Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy
	Coherent Control of Quantum Dynamics with Sequences of Unitary Phase-Kick Pulses
	Equation-Free Multiscale Computation: Algorithms and Applications
	Chirality in Nonlinear Optics
	Physical Chemistry of DNA Viruses
	Ultrafast Dynamics in Reverse Micelles
	Light Switching of Molecules on Surfaces
	Principles and Progress in Ultrafast Multidimensional Nuclear Magnetic Resonance
	Controlling Chemistry by Geometry in Nanoscale Systems
	Active Biological Materials
	Wave-Packet and Coherent Control Dynamics




