
1 Overview of fold continuation demos

In all demos we have a two-parameter plane of (x1, x2), on which measurements are
taken with mean ȳ and error with variance v, of the form

y(x) ∼ ȳ(x) +N(0, v(x)).

We want to track a curve in the (x1, x2)-plane of the form f(y(x),∂xy(x), x) = 0. For
example, take an ODE with cusp normal form

u̇ = a+ bu− u3 (1)

where we apply control through a

a(u) = k[uref − u] with, e.g., k = 3. (2)

Then, (x1, x2) = (b,uref), and for every input (x1, x2) we could measure

y(x1, x2) = lim
t→∞u(t),

which would be the equilibrium output of (1)–(2). The fold curve is then defined by
∂a/∂uref = 0, that is, 0 = k[1 − ∂2y(x)], such that we have to track the root curve of

0 = ∂2y(x1, x2) − 1. (3)

1.1 Interpolation/linear regression

Suppose we already made a set of measurements in a set of points :

[Y,V] := (ȳ1, v1), . . . ,(ȳN, vN) in X :=

[
x1,1
x2,1

]
, . . . ,

[
x1,N
x2,N

]
with means ȳj and variances vj. Y and V are the vectors of measured means and
variances of y in the points stored 2×N array X. We use some meshless linear in-
terpolation/regression method1 that generates functions y(x) for means and v(x) for
uncertainties for all x ∈ R2. The results y and v depend on the measurements, so lets
write

y(x) = yg(x; Y,V ,X) (expected value according to regression estimate)
v(x) = vg(x; Y,V ,X) (variance/uncertainty according to regression estimate).

Linear regression usually means, yg is linear in Y. The functions yg and vg are smooth
in x such that the interpolation defines us a trackable curve via the equation

f(yg(x; Y,V ,X),∂xyg(x; Y,V ,X), x) = 0.

1I use a Gaussian process.
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Specifically, for the cusp problem, this is given by solving the equation

0 =
∂

∂x2
yg(x1, x2; Y,V ,X) − 1.

The variance vg and some chain rule would also define a (linearised) uncertainty of the
implicitly defined curve, but the simple procedure below does not rely on this. Since
the regression function yg is analytically known for given (Y,V ,X), its derivatives can
be computed analytically or by using finite differences such that standard Newton
iterations and continuation methods can be applied to any root problem using yg with
given (Y,V ,X).

1.2 Minimal continuation

Given

• Sets of measurements (Y,V) in points X, with corresponding regression functions
yg(·; Y,V ,X) and vg(·; Y,V ,X).

• Point xc ∈ R2 on the implicitly defined curve

f(yg(xc; Y,V ,X),∂xyg(xc; Y,V ,X), xc) = 0.

• Tangent xtan ∈ R2 of implicitly defined curve at xc (of unit length):

∂

∂x
[f(yg(x; Y,V ,X),∂xyg(x; Y,V ,X), x)] |x=xcxtan = 0, ‖xtan‖ = 1.

Sensitivity We define the sensitivity of xc with respect to a new measurement at a point
xnew, e(xnew. Assume that we make a measurement at xnew that is off the expected
value by one estimated standard deviation according to the regression (yg, vg). When
including this measurement into our regression, how much would the root xc change?
Or, easier, how much would the residual of f at xc change? More precisely,

ynew := yg(xnew; Y,X,V) +
√
vg(xnew; Y,X,V),

vnew := meanV (rough guess), then
e(xnew) := |f(yg(xc;m),∂xyg(xc;m), xc)| where m = [Y,ynew], [V , vnew], [X, xnew].

(4)

The function e : R2 7→ [0,∞] has a maximum point xmax with maximum value emax. A
measurement at this point will have the biggest influence on the current estimate of the
root, according to our current belief in the form of regression (yg, vg).
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Steps

1. Improve the accuracy of xc with additional measurements.

a) Set ecur = emax.

b) Repeat until at most nmax points are added, or until ecur < tolerance:

i. Take measurement (ȳnew, vnew) at xnew, where xnew is the x maximising e

given in (4).

ii. Incorporate, new measurement into regression function:

y(x) = yg(x; [Y, ȳnew], [V , vnew], [X, xnew])

v(x) = vg(x; [Y, ȳnew], [V , vnew], [X, xnew].

and consider for following steps sensitivity e using the updated yg and
vg (hence, xmax will likely be different in the next step).

2. Correct and continue xc using the new interpolation (yg, vg) (which has taken into
account the data points, added in the improvement step) according to

0 = f(yg(xc,new;m),∂xyg(xc,new;m), xc,new) where m = (Y,V ,X), includes new points,

0 = xTtan[xc,new − xc] − stepsize.

3. Reduce interpolation. Remove any data points that do not influence the residual of
f at the current new xc. For example, sort the points in X in decreasing distance
from xc and remove points (and measurements) from m = (Y,V ,X) as long as

|xc,reduced − xc| < threshold, where
0 = f(yg(xc,reduced;mreduced),∂xyg(xc,reduced;mreduced), xc,reduced)

but keep, for example, at least points2keep points.

4. Move back to Improvement step for next step of continuation.

Remarks

• For a given interpolation (yg, vg) and point xc ,finding the point x to which the
sensitivity e defined in (4) is maximal, is a nonlinear optimisaton problem. It can
be solved without running experiments, but it is still overkill, since the estimates
are not that reliable. Instead, I pick an approximately equidistributed number (say
3nmax) within a radius checkradius of xc. Then I find the point which maximises
e among them.

There are also many alternatives to defining sensitivity. One can derive a variance
v of xc (the root of f) by linearising f in xc. Then one could check for which
added measurement point x this quantity v is reduced the most, assuming the new
measurement ȳ in x equals yg(x; Y,V ,X) (xc itself will not change if measurement
ȳ equals regression value yg(x; Y,V ,X)).
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• During the improvement step, one has to run the experiment several times at a
sequence of points. One can afford to have this run to be of the form for a function
call (in matlab notation)

[x,ybar ,yvar ,data]= RunExperiment(x_requested ,data)

where the argument x_requested is the set of experimental inputs that one re-
quests to be used, but the additional output x is the set of inputs in which it was
actually run. After the run, the new measurement ȳ = ybar, v = yvar at point x is
included into the set of regression points (Y,V ,X). Since the list of points in which
measurements are to be made are only optimising approximate sesnitivity, using
another point instead is not a problem.

This permits the continuation to keep the problem of restricting to experimentally
feasible points entirely inside the call to the experiment.

• It is sensible to set the tolerance for the improvement step to, for example,

tolerance=emax/2

or so (where emax was the maximal sensitivity before improvement). The actual
values of the sensitivity may depend on regression parameters. For example, the
Gaussian provess, which I used, has a parameter cvm that determines how “bendy”
the interpolation is (and, thus, how closely it follows measurements, smaller
cvm=bendier). So, increasing cvm automatically decreases the sensitivity.

Also, it may not make sense to set nmax large to insist that sensitivity drops by a
certain amount. It is more economic to keep nmax moderate and move on even if e
is not below tolerance.

The quantity emax is not an error estimate, but rather an estimate, how
much additional information a new measurement will give. Hence, one
doesn’t stop, once a certain accuracy is achieved, but rather, when the
benefit of additional measurements has diminished.

• The list of points xc produced during the continuation is not very accurate. Af-
ter the continuation, one assembles a regression (yg, vg) over all measurements
(Y,V ,X) and performs a standard continuation on this regression function. This
has much lower uncertainty v in its root curve of f since one is always interpolating
measurements, while during the continuation xc is at the boundary of the set of
measurement points.

• The whole approach can be generalised to x ∈ Rn with n > 2, y ∈ Rm and
f ∈ Rn−1. The variance in the interpolation/regression the becomes an m×m

covariance matrix. The functions for Gaussian process that I use assume that the
covariance matrix for y is diagonal (storing only vk for yk).

The advantage of regressing over many points to accommodate for noise dimin-
ishes for higher dimensions though.
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