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FAQ 1:

Q. What is COCO?

A. Welcome! So, what is COCO? Well, first of all, COCO is short for the Computational Continuation
Core. Since that is a bit of a mouthful, | just say COCO.

COCO is an analysis and development platform meant for solving continuation problems. In the
most abstract sense, COCO allows you to compute implicitly defined embedded submanifolds. In the
most concrete sense, and the one that you will typically encounter, COCO allows you to construct
finite-dimensional systems of nonlinear algebraic equations and to describe their solutions.

COCO is built on top of MATLAB, so all of MATLAB’s functionality is immediately available to you.
You interact with COCO in two ways: through a set of utility functions that adhere to regular
MATLAB syntax, as well as through a set of functions that encode your continuation problem. |
recommend that you use MATLAB’s debugging environment for testing the execution of any
function that you author.

A core feature of COCO is its object-oriented view of problem construction and analysis. A major
benefit of the object-oriented paradigm is modularity of construction and reusability of code.
Another benefit is the decoupling of the task of constructing a continuation problem from the task
of describing its solutions using covering algorithms. Here, again, COCQO’s adherence to an object-
oriented paradigm means that you can substitute your own covering algorithms, or inherit from and
modify algorithms developed by others, including those shipped with COCO.

You can read about the concept of task embedding in Parts | and Il of the textbook “Recipes for
Continuation”. Covering algorithms are discussed in detail in Part Il of “Recipes for Continuation”.
The book contains simple as well as advanced examples of these concepts with the hope that you’ll
be able to mix and match example code to serve your needs.



So, to summarize, COCO is an object-oriented development platform for constructing continuation
problems and mapping out their solutions.

The instructional videos on this site are meant to guide you through key steps in the use of COCO. |
hope you find them useful.

FAQ 2
Q. What is continuation?
A. Welcome! So, what is continuation? And what is a continuation problem?

A continuation problem seeks to find the zeros of a function Phi under the assumption that these
zeros are locally homeomorphic to some finite-dimensional real space’.

A continuation problem may be either finite-dimensional or infinite-dimensional, depending on the
dimension of the domain of the function Phi. When analyzed using numerical methods, an infinite-
dimensional problem must be replaced by a finite-dimensional discretization, but the choice of
discretization may change during the analysis.

In the finite-dimensional case, a continuation problem is said to be closed when the dimension of
the domain of the function Phi equals the dimension of its image”. When the dimension of the
domain is greater than the dimension of the image, we say that the problem has a dimensional
deficit equal to the excess.

For continuously-differentiable functions, the implicit-function theorem states that there exists a
locally unique and differentiable zero-manifold near every regular zero and that the manifold
dimension equals the dimensional deficit.

Continuation problems may be characterized by the operational meaning played by the coordinate
components that describe the domain of the function Phi. COCO relies heavily on such a
characterization.

Suppose that the coordinate components that describe the domain have no distinguishing
operational meaning. In this case, we refer to these coordinates as continuation variables v, to the
components of the function Phi as zero functions, and to the continuation problem Phi(u)=0 as a
zero problem. The continuation variables are free to vary arbitrarily along the zero manifold, as long
as such variations ensure that the components of Phi equal zero throughout.

! The audio narration states that this should be a real vector space, but the “vector” part should be
omitted from the definition.

2 It is more correct to refer to the dimension of the range, rather than of the image, as the former is
defined by the number of components of Phi.



We obtain an extended continuation problem by introducing a set of monitor functions Psi on the
domain of Phi and by appending the expressions Psi(u)-mu to the function defining the zero
problem. Here, the components of mu are called continuation parameters. Together with the
continuation variables, the continuation parameters describe the domain of the extended
continuation problem. The extended continuation problem has the same dimensional deficit as the
original zero problem, but the embedding of the zero manifold in the new domain is of course
different.

There are two advantages to using the extended continuation problem. One lies in the opportunity
to detect and locate special points on the zero manifold, points associated with particular values of
some component of Psi.

The second advantage lies in the ease with which we can impose additional constraints on the
continuation variables that must be satisfied along the corresponding zero manifold. We do this
simply by insisting that a subset of the continuation parameters not be allowed to vary, and refer to
the corresponding elements of mu as inactive continuation parameters. The other elements of mu
are then referred to as active continuation parameters.

We can make this decision at the time of construction or at run-time, long after the construction of
the continuation problem. We refer to the continuation problem obtained after the imposition of
such a restriction as a restricted continuation problem. The new zero manifold is obtained by
intersection with a collection of hyperplanes corresponding to fixed values of the inactive
continuation parameters followed by projection onto the continuation variables and the active
continuation parameters.

If we project the zero manifold of the restricted continuation problem onto the space spanned by
the continuation variables, then we obtain the zero manifold of the reduced continuation problem.
This is a submanifold of the zero manifold of the original zero problem.

So, to summarize, a continuation problem is a system of equations for finding the zeros of some
function on a finite- or infinite-dimensional domain. By extending the continuation problem with
monitor functions and continuation parameters, the tasks of locating special points on the zero
manifold and of restricting the analysis to constrained submanifolds can be handled long after the
construction of the continuation problem.

To become a proficient analyst, it helps to visualize simple examples of these concepts and to make
frequent use of the different terms.

Let’s take a look at a couple of simple examples from Section 2.2.5 of “Recipes for Continuation”.
We start with the zero function Phi in terms of ul and u2. The zero manifold is the circle



ul=cos(theta), u2=1+sin(theta). The zero manifold of the extended continuation problem obtained
by appending the equation

ul”r2+u222-mul=0

is the curve ul=cos(theta), u2=1+sin(theta), and mul=2+2sin(theta). The zero manifold of the
restricted continuation problem obtained by fixing the value of mu1 to 2 consists of the points
(ul,u2)=(1,1) and (-1,1). In this case, the corresponding reduced continuation problem is identical to
the restricted continuation problem.

Suppose, instead, that we start with the zero function Phiin terms of ul, u2, and u3. The zero
manifold is the cylinder ul=cos(theta), u2=1+sin(theta), and u3=z. The zero manifold of the
extended continuation problem obtained by introducing three monitor functions and the
corresponding continuation parameters is the surface ul=cos(theta), u2=1+sin(theta), u3=z,
mul=Sqrt(2+2sin(theta)), mu2=cos(theta), and mu3=z-cos(theta)+0.5. The zero manifold of the
restricted continuation problem obtained by fixing the value of mu3 to -0.5 is the curve
ul=cos(theta), u2=1+sin(theta), u3=cos(theta)-1, mul=Sqrt(2+2sin(theta)), and mu2=cos(theta). Its
projection onto the space spanned by the continuation variables is the zero manifold of the reduced
continuation problem obtained by omitting the second and third equations.

These examples illustrate the differences between the domains of the original zero problem, of its
extension in an extended continuation problem, of a corresponding restricted continuation
problem, and of the equivalent reduced continuation problem.

FAQ 3

Q. How do linstall COCO?

A. Welcome! In this video, we illustrate the steps required to either download and install the most
recent release of COCO, or check out and install a version-controlled working copy of COCO.

To follow along with this video, you need an internet-connected computer with a current MATLAB
license. While we guarantee full support for COCO running on MATLAB versions 2009b-2011b, the
functionality described in this and other instructional videos is compatible with version 2012b. This
is also the platform used in these videos. To check out a version-controlled copy of COCO, make sure
that your computer also provides you with a command-line or graphical user interface to your
directory structure, with support for the Subversion command.

Let’s start with showing you how to download and install the most recent release of COCO. If you
want to check out and install a version-controlled working copy of COCO, skip to the corresponding
section of this video.



The most recent release of COCO is stored in a compressed package file in a SourceForge repository.
To access this file, open an Internet browser window. Type

sourceforge.net/projects/cocotools/files/latest/download into the address bar and press the Enter

key on your keyboard.

Depending on your browser settings, the compressed package file may be automatically saved to a
designated folder on your disk, or a dialog box will open up on your screen.

Windows: This gives you the option of opening the compressed package file using a specific
application, or saving the file to disk.

Mac: This gives you the option of saving the file to disk.

For your information, the name of the compressed package file includes the date of the release.
Save the file to a location of your choice and make a note of this location.

In a directory browser, navigate to the location containing the compressed package file. If this has
not been automatically decompressed, use a decompression routine to unpack the file. By default,
this process creates a sub-directory named coco. This directory contains all the files associated with
the release, including a startup script file named startup.m. Make a note of the full path to this

file, for later use.

Next, switch to MATLAB. When MATLAB starts up, its working directory defaults to the MATLAB
startup directory. If your working directory differs from the startup directory, enter the command
“userpath” on the command line to determine the path to the startup directory. Then, enter the
command “cd” followed by this path on the command line.

Next, enter the command “edit” followed by “startup.m” on the command line. If the MATLAB
startup directory contains a file named startup.m, this action opens the file using the MATLAB
editor. If no such file exists, a MATLAB editor dialog box appears asking you to confirm that you wish
to create a new file with this name. In this case, click on the “Yes” button. An empty file with the
name startup.mis automatically added to the directory and opened in the MATLAB editor for
further editing. Add a line to the startup.m file in the MATLAB editor containing the command
“run” followed by the full path to the startup.m file in the coco directory. Then, save your
changes.

Finally, quit MATLAB. The startup script in the coco directory will be automatically executed every
time MATLAB is started. This ensures that COCO and all associated toolboxes are in the MATLAB
search path.



Let’s continue by showing you how to check out and install a working copy of COCO from a version-
controlled SourceForge repository. This approach allows you to regularly update your local COCO
installation by monitoring changes to the source code and making the appropriate file substitutions.

Windows: In this video, the graphical user Subversion interface TortoiseSVN is accessed through the

directory browser context menu.

Mac: In this video, we access the svn command using the Terminal application.

Windows: Open a directory browser window and navigate to a location of your choice. Create a sub-
directory for holding the working copy of COCO. Next, right-click on this folder to open the context

menu! To open the TortoiseSVN checkout dialog box, click on SVN Checkout.

Mac: Open a terminal window and navigate to a location of your choice. Create a sub-directory for

holding the working copy of COCO.

Next, open an Internet browser window. Type sourceforge.net/p/cocotools/wiki/checkout into the

address bar and press the Enter key. This webpage contains a list of subversion checkout
commands.

Windows: Copy the source URL, associated with the first checkout command, and paste this into the
repository URL textbox in the TortoiseSVN Checkout dialog box. Copy the target directory path,
associated with the first checkout command, and append this to the Checkout directory path in the
TortoiseSVN Checkout dialog box. Click OK.

Mac: Copy the first checkout command and paste this into the terminal window. Click the Enter
button on your keyboard.

Repeat these steps with each of the checkout commands to check out a working copy of COCO and
associated toolboxes into your target directory. This process stores a startup script file named
startup.min the subdirectory toolbox/core/admin. Make a note of the full path to this file,

for later use.

Next, switch to MATLAB. When MATLAB starts up, its working directory defaults to the MATLAB
startup directory. If your working directory differs from the startup directory, enter the command
“userpath” on the command line to determine the path to the startup directory. Then, enter the

command “cd” followed by this path on the command line.

Next, enter the command “edit” followed by “startup.m” on the command line. If the MATLAB
startup directory contains a file named startup.m, this action opens the file using the MATLAB
editor. If no such file exists, a MATLAB editor dialog box appears asking you to confirm that you wish
to create a new file with this name. In this case, click on the “Yes” button. An empty file with the



name startup.mis automatically added to the directory and opened in the MATLAB editor for
further editing. Add a line to the startup .m file in the MATLAB editor containing the command
“run” followed by the full path to the startup.mfile in the toolbox/core/admin directory.

Then, save your changes.

Finally, quit MATLAB. The startup script in the coco directory will be automatically executed every
time MATLAB is started. This ensures that COCO and all associated toolboxes are in the MATLAB
search path.

Windows: From time to time, you may wish to update your working copy of COCO. To do this with
TortoiseSVN, open a directory browser window, and navigate to the directory holding the working
copy of COCO. To update a version-controlled folder inside this directory, right-click on the folder to
open the context menu, and click on SVN Update.

Mac: From time to time, you may wish to update your working copy of COCO. To do this, open a
terminal window, and navigate to the directory holding the working copy of COCO. To update a
version-controlled folder inside this directory, enter svn update on the command line.

With the addition of new toolboxes, additional lines will be added to the list of checkout commands.
The complete list can be found at sourceforge.net/p/cocotools/wiki/checkout. Please remember to

visit often!

FAQ 4
Q. Whatis coco_prob?
A. Welcome! So, what is coco_prob? And what is a continuation problem structure?

In this video, we illustrate the steps required to initialize the data structure used by COCO to encode
a continuation problem.

To follow along with this video, you need a computer with a current MATLAB license. While we
guarantee full support for COCO running on MATLAB versions 2009b-2011b, the functionality
described in this and other instructional videos is compatible with version 2012b. This is also the
platform used in these videos. You should also review the terminology and basic definitions
introduced in Chapter 2 and in the beginning of Chapter 3 of the book “Recipes for Continuation”.

Switch to MATLAB and navigate to your preferred working directory. In COCO, the information used
to encode a restricted continuation problem and to explore its solution manifold is stored in a
continuation problem structure. To initialize an empty continuation problem structure, assign the
output of the core utility coco_prob to a MATLAB variable. For example, if the MATLAB variable that



will hold the continuation problem structure is named ‘prob’, enter “prob=coco_prob” followed® by
a semicolon on the command line. The MATLAB variable ‘prob’ is now added to the MATLAB
workspace. This variable is a single element of type struct.

In this video, we illustrated the steps required to initialize an empty continuation problem structure.
You may also wish to view the video on “What is coco_add_func?” or the video on “What is
coco_set?”

FAQ5
Q. What is a COCO-compatible function file?

A.

Welcome! So, what is a COCO-compatible function file? And how does one encode zero or monitor
functions for analysis by COCO?

In this video, we illustrate the syntax requirements and a general paradigm for encoding a collection
of zero or monitor functions in a COCO-compatible MATLAB file. To follow along with this video, you
need a computer with a current MATLAB license. While we guarantee full support for COCO running
on MATLAB versions 2009b-2011b, the functionality described in this and other instructional videos
is compatible with version 2012b. This is also the platform used in these videos. You should also
review the terminology and basic definitions introduced in Chapter 2 and in the beginning of
Chapter 3 of the book “Recipes for Continuation”.

Switch to MATLAB and navigate to your preferred working directory. Enter “edit” followed by
“coco_funcfile” on the command line*. This action opens the template file coco funcfile.m
using the MATLAB editor. Remember to save a copy of this file to your working directory before
making any changes.

The template file contains several example encodings. These may be used to guide your own code
development. It is good practice to include some comments at the beginning of the file explaining
the origin of the encoding and the use of the input arguments.

The function definition syntax is the required format for the first line in the template file. This is
what defines the encoding to be compatible with COCO. As seen in the function definition, a COCO-
compatible encoding has three input arguments and two output arguments. At the conclusion of
execution, the second output argument contains a vector® of numerical values obtained by
evaluating each of the zero or monitor functions. In a call to a COCO-compatible encoding by the

*In “Recipes for Continuation”, calls to coco_prob are given in the form coco_prob(), but the output is
the same as when the empty parentheses are omitted.

* The coco funcfile.mis located at the top level of the coco directory created from a current
release. Copy this file to your working directory before opening the file in the MATLAB editor.

> This should better be referred to as an array.



COCO core, the first input argument contains a continuation problem structure initialized by the
coco_prob utility. The second input argument contains the function data structure. The content of
this variable may be modified in the function body and is returned in the first output argument. The
third input argument contains a vector® of numerical values of a subset of the continuation variables
associated with the function dependency index set. The function data structure and the dependency

index set are initialized in the call to the coco_add_func constructor.

Look at the first example encoding in the template file. This demonstrates a direct association
between a functional expression in terms of the components of the input argument ‘u’, on the one
hand, and the return argument ‘y’, on the other. Here, the first three components of ‘u’ are used to
calculate a value for ‘y’.

For more sophisticated applications, the functional expression may be replaced by the output of
some algorithm. This algorithm may be encoded within the same function, or in a separate function.
It may include conditional and flow control statements, just like in any MATLAB function. Look at the
second example encoding in the template file. This obtains a value for the output argument ‘y’ from
a difference calculation involving the application of the MATLAB quad algorithm. The encoding also
demonstrates the use of fields of the function data structure to parameterize the execution of the
algorithm.

It is often useful to provide for an encoding for a particular class of zero or monitor functions. Such
an encoding relies heavily on a parameterization stored in the function data structure. Look at the
third example encoding in the template file. This assumes that the zero functions are encoded in a
separate function, whose function handle is stored in the ‘than’ field of the function data structure.
In addition, the function class assumes two distinct input arguments. The ‘x_idx’ and ‘p_idx’ index
sets are used here to extract the corresponding elements from the ‘u’ input argument.

Changes to the function data structure within the encoding allow for an adaptive response to
changes in its execution between successive calls. In the fourth example encoding in the template
file, the ‘opts’ field of the function data structure parameterizes the execution of the function whose
handle is stored in ‘data.fhan’. Modifications to this parameterization survive execution and affect
the execution of this function in any subsequent call.

In this video, we illustrated the basic principles and syntax requirements for encoding zero or
monitor functions in a COCO-compatible MATLAB file. You may also wish to view the video on
“What is coco_prob?” or the video on “What is coco_add_func?”

FAQ6

Q. How do | encode Jacobians?

®See previous footnote.



A. Welcome! So, how do you encode Jacobians? And is it really necessary to do so?

In this video, we illustrate the syntax requirements for encoding the Jacobian of a collection of zero
or monitor functions in a COCO-compatible MATLAB file. To follow along with this video, you need a
computer with a current MATLAB license. While we guarantee full support for COCO running on
MATLAB versions 2009b-2011b, the functionality described in this and other instructional videos is
compatible with version 2012b. This is also the platform used in these videos. You should also
review the terminology and basic definitions introduced in Chapter 2 and in the beginning of
Chapter 3 of the book “Recipes for Continuation”. You may also wish to view the video “What is a
COCO-compatible function file?”

Switch to MATLAB and navigate to your preferred working directory. Enter “edit” followed by
“coco_funcfile” on the command line. This action opens the template file coco funcfile.m
using the MATLAB editor. Remember to save this file to your working directory before making any
changes.

The template file contains several example encodings of zero functions. Delete all but the first one in
“Example usage 1”. This encodes two zero functions with a dependency on the first three
components of the ‘u’ input argument. The actual number of components of the ‘u’ input argument,
however, is not given in the encoding, but is determined by the size of the function dependency
index set.

Save another copy of the edited file to your working directory, but add DFDU to the file name.
Change the function name accordingly. Also change the variable name of the second output
argument from ‘y’ to ‘)’ to reflect the intent to have this contain the numerical value of the Jacobian
matrix, rather than of the zero functions themselves.

Next, suppose that the number of components of the ‘u’ input argument is exactly three. It follows
that the Jacobian of the zero functions with respect to the corresponding elements of the vector of
continuation variables is a two by three rectangular matrix. It is good practice to initialize the output
argument ‘)’ to a correspondingly sized zero array. Proceed to assign functional expressions to each
nonzero element of the Jacobian matrix. Here, the first index refers to the corresponding zero
function and the second index refers to the corresponding component of ‘u’.

During development, it is often useful to verify the encoding of the Jacobian by a comparison with
an approximation obtained using finite-difference methods. The core utility coco_ezDFDX provides
such functionality. Specifically, an approximate Jacobian of the zero functions encoded in the
function with function handle ‘@demo_func’ is obtained in the second return argument of the
following call:

[data Jt] = coco ezDFDX('f(o,d,x)', prob, data, @demo func, u);



With the introduction of a breakpoint in the function body, execution will pause when reaching this
line, allowing a comparison between the content of the MATLAB variables ‘)’ and ‘Jt’.

For more sophisticated applications, the functional expressions may be replaced by the output of
some algorithm. This algorithm may be encoded within the same function, or in a separate function.
It may include conditional and flow control statements, just like in any MATLAB function. The
toolbox examples in the book “Recipes for Continuation” illustrate this generalized approach.

In this video, we illustrated the syntax requirements for encoding the Jacobian of a collection of zero
or monitor functions in a COCO-compatible MATLAB file. You may also wish to view the videos on
“What is a COCO-compatible function file?” and “What is coco_add_func?”

FAQ 7

Q. Whatis coco_add_func?

A. Welcome! So what is coco_add_func? And what does it mean to build a continuation problem
structure?

In this video, we illustrate the steps required to add a collection of zero functions to a continuation
problem structure. To follow along with this video, you need a computer with a current MATLAB
license. While we guarantee full support for COCO running on MATLAB versions 2009b-2011b, the
functionality described in this and other instructional videos is compatible with version 2012b. This
is also the platform used in these videos. You should also review the terminology and basic
definitions introduced in Chapter 2 and in the beginning of Chapter 3 of the book “Recipes for
Continuation”. You can read about coco_add_func and its role as an object constructor in Chapter 4
of this textbook.

In this example, we assume that the MATLAB variable ‘prob’ in the workspace contains a
continuation problem structure used by COCO to encode a continuation problem. In particular,
‘prob’ stores information about function handles for COCO-compatible encodings of zero and
monitor functions, with associated function data structures and dependency index sets. The
individual function data structures parameterize the execution of the corresponding encodings. The
individual function dependency index sets identify the subset of continuation variables whose values
are used during execution.

Consider the COCO-compatible encoding of a collection of zero functions in the function

demo funcl.m. To add this to the continuation problem structure, we rely on the coco_add_func
constructor. At a minimum, a call to the constructor requires that we provide the corresponding
function handle, the initial content of the function data structure, and information regarding the
function dependency index set. The call to the constructor must also associate a unique function
identifier to this encoding.



Let’s associate the function identifier ‘demo1l’ to the collection of zero functions encoded in
demo funcl.m. Since the function data structure is not used in the function body, this can be

initialized to the empty array.

We provide information regarding the function dependency index set in two steps. First we identify
any dependencies on already declared continuation variables. This is accomplished with the ‘uidx’
flag followed by an array of integer indices. In this example, we assume that the first two
components of the ‘u’ input argument to demo_funcl.m correspond to the 6" and 9" elements

of the collection of already declared continuation variables.

We proceed by declaring additional continuation variables and the corresponding values in the
initial solution guess. In this example, the third component of the ‘u’ input argument is a new
continuation variable whose initial value is assumed to equal -3. The ‘zero’ flag in the constructor
call identifies the encoding as corresponding to a collection of zero functions.

Next, consider the COCO-compatible encoding of a collection of zero functions in the function
demo func?2.m. To add this to the continuation problem structure, we again rely on the
coco_add_func constructor. As before, a call to the constructor requires that we provide the
corresponding function handle, the initial content of the function data structure, and information
regarding the function dependency index set. The call to the constructor must also associate a

unique function identifier to this encoding.

Let’s associate the function identifier ‘demo?2’ to the collection of zero functions encoded in
demo_func2.m. Since the function data structure is used in the function body, initial content must
be provided in the call to the coco_add_func constructor. In this case, we assign a numerical value
to the ‘tol’ field of the data structure outside of the call to coco_add_func, and include this data
variable in the call to coco_add_func.

As before, we provide information regarding the function dependency index set in two steps. First
we identify any dependencies on already declared continuation variables. This is accomplished with
the ‘uidx’ flag followed by an array of integer indices. In this example, we assume that the first
component of the ‘v’ input argument to the demo_func2 .m function corresponds to the 2"

element of the collection of already declared continuation variables.

We proceed by declaring additional continuation variables and the corresponding values in the
initial solution guess. In this example, the second component of the ‘u’ input argument is a new
continuation variable whose initial value is assumed to equal 1. The ‘zero’ flag in the constructor call
identifies the encoding as corresponding to a collection of zero functions.

The coco_add_func constructor may also be used to add a collection of monitor functions to the
continuation problem structure. In this case, the ‘zero’ flag must be replaced by either of the flags
‘active’, ‘inactive’, or ‘internal’ for embedded monitor functions, and ‘regular’ or ‘singular’ for



nonembedded monitor functions. In addition, it is necessary to introduce string labels for each of
the continuation parameters associated with the component monitor functions.

The coco_add_func constructor may also be used to associate an encoding of the Jacobian of a
collection of zero or monitor functions to the corresponding encoding of these functions. In this
case, the function handle to the encoding of the Jacobian is included as an additional argument
following the function handle to the encoding of the zero or monitor functions, and before the
function data structure.

Finally, in more sophisticated applications, the coco_add_func constructor may be used to provide a
guess for components of the initial tangent vector to the solution manifold. In this case, we add the
‘t0’ flag followed by a numerical array to the list of arguments.

In this video, we illustrated the steps required to add a collection of zero functions to a continuation
problem structure. You may also wish to view the videos on “What is a COCO-compatible function
file?” and “What are coco_add_pars and coco_add_glue?”

FAQ 8
Q. What are coco_add_pars and coco_add_glue?

A. Welcome! So, what are coco_add_pars and coco_add_glue? And how do they differ from
coco_add_func?

In this video, we demonstrate the encoding of special-purpose wrappers that enclose one or several
calls to the core constructor coco_add_func. To follow along with this video, you need a computer
with a current MATLAB license. While we guarantee full support for COCO running on MATLAB
versions 2009b-2011b, the functionality described in this and other instructional videos is
compatible with version 2012b. This is also the platform used in these videos. You should also
review the material on special-purpose wrappers in Chapter 3 of the book “Recipes for
Continuation”, with emphasis on Example 3.13 in this textbook.

Switch to MATLAB and navigate to your preferred working directory. On the command line, enter
“copyfile” followed by the path to the henon folder’ in the coco\examples\recipes
subdirectory®. This action copies the files from this folder to your working directory. Open the files
demo chap3 v3.m,hen.m period A.m,and period B.minthe MATLAB editor and

explore their content.

”In newer releases, the content of this folder is in the cmds demo folder of the recipes subdirectory.
The file hen.mis renamed henon.m (as in “Recipes for Continuation”) and demo chap3 v3.mis
renamed demo_henon.m.

8 Orin the corresponding folder of a checked out working copy of COCO.



In this example, we seek to continue period-n orbits of the two-dimensional Henon map, described
in terms of the system parameters a and b. Since we are looking for fixed points of iterates of this
map, it is convenient to introduce the function f with domain in R46 and image in R2. Here, the first
two arguments represent the system parameters and the remaining arguments the coordinates of a
point in the domain of the Henon map and the corresponding point in its image. As an example, a
fixed point of the Henon map corresponds to a zero of the function f with z3=z5 and z4=z6.

A COCO-compatible encoding of the function f is given in the function hen . m® in your working

directory. We add some comments to the beginning of this file to explain its origin.

For n>=2, period-n orbits of the Henon map correspond™ to zeros of the zero problem Phi(u)=0,
where u is a 2n+2-dimensional vector of continuation variables. We note that each new row in the
zero problem depends partially on elements of u that have been introduced in previous rows and
partially on new elements of u that have yet to be declared. Accordingly, it is natural to decompose
the construction of this zero problem following the principles described in “Recipes for
Continuation”, by a series of distinct calls to the coco_add_func constructor. A candidate encoding
of this zero problem is given in the function period_A.m in your working directory. The mixed use of
the ‘uidx’ and ‘u0’ flags in the calls to coco_add_func reflects this decomposition. We add some
comments to the beginning of this file to explain its origin. We note, in particular, that the ‘u0’ input
argument needs to contain a vector with 2n+2 components.

For n>=1, period-n orbits of the Henon map may be obtained alternatively from the zeros of this
modified zero problem, where u is a 2n+4-dimensional vector of continuation variables. This differs
from the previous formulation in that the calls to the function f are all of the same form. The two
final rows in the zero problem correspond to gluing conditions that each impose the constraint that
two continuation variables be equal along the zero manifold.

The special-purpose wrapper coco_add_glue provides a convenient implementation of one or
several gluing conditions. A candidate encoding of the modified zero problem that relies on
coco_add_glue is shown in the function period_B.m in your working directory. We note, in
particular, that the ‘u0’ input argument needs to contain a vector with 2n+4 components, where the
values of the last two components should equal the values of the third and fourth components.

Using either of the two encodings of the zero problem, the MATLAB commands in the

demo chap3 v3.m file'' demonstrate the use of the coco_add_pars special-purpose wrapper to
add two monitor functions whose values equal the values of the system parameters. The array
following the function identifier ‘pars’ provides the integer indices of the corresponding elements of

? Function is renamed henon .m; see previous footnote.
19 This is also true for n=1, but with a redundant encoding of the fixed point.
™ Function is renamed demo_henon.m; see earlier footnote.



the vector of continuation variables. The string labels ‘a’ and ‘b’ are here used to identify the
corresponding continuation parameters.

In this video, we described mechanisms for enclosing one or several calls to the core constructor
coco_add_func within a special-purpose wrapper. We also gave examples of the use of the special-
purpose wrappers coco_add_pars and coco_add_glue. You may also wish to view the videos on
“What is a COCO-compatible function file?” and “What is coco_add_func?”

FAQ9

Q. Whatis coco_get_func_data?

A. Welcome! In this video, we demonstrate the use of the core utility coco_get func_data to extract
information from a continuation problem structure about a collection of zero or monitor functions
encoded therein. We explain the nature of embeddable constructors and how coco_get_func_data
provides access to context-dependent information during construction.

To follow along with this video, you need a computer with a current MATLAB license. While we
guarantee full support for COCO running on MATLAB versions 2009b-2011b, the functionality
described in this and other instructional videos is compatible with version 2012b. This is also the
platform used in these videos. It’s a good idea to review the material on function data in Chapter 3
of the book “Recipes for Continuation”, as well as the discussion of embeddable constructors in
Section 4.2 of this textbook.

A constructor is said to be embeddable if it satisfies two conditions: first, its purpose? is to append
zero functions, monitor functions, and elements of the initial solution guess to a given continuation
problem structure and second, its design makes no context-independent assumptions about the
initial content of this continuation problem structure.

The coco_add_func core constructor is an embeddable constructor, since its design makes no
context-independent assumptions about the content of the continuation problem structure in its
first input argument. Specifically, any overlap between the function dependency index set and the
indices of already declared continuation variables must be provided to coco_add_func through
explicit use of the ‘uidx’ flag. The associated array of integer indices provides context-dependent
information to coco_add_func. By the same token, the special-purpose wrappers, coco_add_pars
and coco_add_glue are also embeddable constructors.

If a constructor relies on context-dependent information that is not available a priori, such
information may be obtained using the coco_get_func_data utility. As an example, consider the
function my_add_pars. Since the function encloses a call to the embeddable constructor

12 \we may generalize the notion of embeddable to include any action that appends information to an
existing continuation problem structure without context-independent assumptions.



coco_add_pars in order to modify the content of the continuation problem structure ‘prob’, it is also
a constructor. Notably, the function body includes no hard-coded context-independent information
about the initial content of the continuation problem structure. Context-dependent information is
instead obtained using the coco_get func_data utility. The function my_add_pars is therefore an
embeddable constructor.

As described in the comments at the beginning of the encoding, the purpose of the my_add_pars
constructor is twofold: i) to append monitor functions that evaluate to a subset of the previously
declared continuation variables, and ii) to declare the corresponding continuation parameters as
initially inactive. In the call to coco_get_func_data, the second input argument is a function
identifier that is assumed to be stored in the continuation problem structure prob. The optional
flags ‘data’ and ‘uidx’ indicate that the coco_get func_data utility should return the corresponding
function data structure and function dependency index set. The subset of the latter indexed by the
‘pars’ field of the function data structure is subsequently associated with a set of inactive
continuation parameters identified by string labels obtained from the call to the

coco_get_def par_names utility.

We proceed to illustrate the use of the my_add_pars constructor. First, consider the COCO-
compatible wrapper my_funcfile for a COCO-incompatible encoding of zero or monitor functions
that take two input arguments. Here, index sets stored in the function data structure are used to
extract subsets of the input argument ‘u’ that constitute the input arguments of the function whose
handle is stored in the ‘fhan’ field of the function data structure.

In this example, we use an inline definition of a function of two variables x and p and assign its
handle to the ‘fhan’ field of the data variable. This information is associated with the ‘cusp’ function
identifier in the subsequent call to coco_add_func. Finally, the call to my_add_pars introduces two
additional monitor functions that evaluate to the second and third continuation variables associated
with the corresponding function dependency index set. The call further assigns the string labels

‘cusp(1)’ and ‘cusp(2)’ to the corresponding continuation parameters.

So, to summarize, we support the object-oriented paradigm of COCO by relying on embeddable
constructors, whose design makes no context-independent assumptions about the initial content of
the continuation problem structure. In this video, we demonstrated the use of the

coco_get func_data utility to provide context-dependent information to an embeddable
constructor, ensuring its intended application independently of the order of construction. For
further information, you may wish to view the videos “What is coco_add_func?” and “What is
coco_add_pars and coco_add_glue?” as well as the general introduction “What is COCO?”

FAQ 10
Q. What are COCO toolboxes?



A. Welcome! From the video “What is COCO?” we recall that COCO is a development platform that
takes an object-oriented view of problem construction and analysis. This viewpoint helps to
interpret the structure of COCO toolboxes, a number of which are developed in the textbook
“Recipes for Continuation”. The basic tenets of the object-oriented design paradigm are described in
Sections 4.3 and 5.1 of this book. In this video, we review this paradigm in the context of the ‘alg’
toolbox, as developed in Chapters 4, 5, 16, and 17 of “Recipes for Continuation”.

To follow along with this video, you need a computer with a current MATLAB license. While we
guarantee full support for COCO running on MATLAB versions 2009b-2011b, the functionality
described in this and other instructional videos is compatible with version 2012b. This is also the
platform used in these videos.

A COCO toolbox is a definition of one or several related abstract classes for construction and analysis
of continuation problems. A COCO toolbox is distinguished by its implementation of zero and/or
monitor functions, by its encoding of slot functions responding to signals emitted during
continuation, by its definition of special points and associated event-handlers, and by auxiliary utility
functions. A COCO toolbox encodes one or several embeddable constructors associated with
different calling syntaxes or distinct continuation problem objects. A unique toolbox instance
identifier distinguishes each instance of a COCO toolbox. The dynamic state of the toolbox instance
during continuation is parameterized by the content of its toolbox data: in other words, the function
data structures of its constituent zero functions, monitor functions, slot functions, and event
handlers.

Toolbox documentation should begin by describing the mathematical class of problems for which a
toolbox is designed. It should also include a description of the toolbox interface: the format and
expected content of the arguments to any of the toolbox constructors; the interpretation and
identifiers of toolbox-specific zero and monitor functions; the interpretation and context-
independent integer indices of continuation variables contributed by the toolbox; the default status
and string labels of continuation parameters introduced by the toolbox; the interpretation and
default values of any toolbox settings; and the interpretation of toolbox-specific content stored to
disk during continuation.

The ‘alg’ toolbox implements a class of continuation problems for which the solution manifold is
given by the zeros of a user-defined function Phi of two sets of variables referred to respectively as
the problem variables and the problem parameters. The first instance of an embeddable version of
the ‘alg’ toolbox occurs in Section 4.2.1 of “Recipes for Continuation” and is found in the alg_v5
folder in coco/examples/recipes. The COCO-compatible encodings of the collection of zero
functions and their Jacobian in ‘alg_F’ and ‘alg_ DFDU’ rely on integer index sets stored in the ‘x_idx’
and ‘p_idx’ fields of the function data structure. These are used to extract numerical values of the
problem variables and the problem parameters from the ‘u’ input argument. A handle to the user-
defined encoding of Phi is assumed to be stored in the ‘fhan’ field of the function data structure. The
implementation allows for an optional encoding of the Jacobians of Phi with respect to the problem



variables and problem parameters, respectively, in the ‘dfdxhan’ and ‘dfdphan’ fields of the function
data structure.

The initial content of the function data structure is assigned in the call to the coco_add_func
constructor in the ‘alg_construct_eqn’ toolbox constructor. The ‘prob’ input argument of this
constructor is an encoding of an arbitrary continuation problem structure. The implementation does
not depend on the initial content of this continuation problem structure: the constructor may
consequently be applied to an empty continuation problem structure.

It is assumed that the ‘data’ input argument to the toolbox constructor is a MATLAB variable of type
struct with all required fields appropriately populated. The toolbox definition allows for an
optional encoding of strings in the ‘pnames’ field of the function data structure. When this is
present, the constructor appends a collection of monitor functions that evaluate to the problem
parameters. The corresponding continuation parameters are initially inactive and associated with
the string labels given by the components of the ‘pnames’ field.

The ‘tbid’ input argument is a string representing a unique toolbox instance identifier. This is also
the identifier associated with the zero functions encoded in alg_F. By appending the string ‘pars’ to
the toolbox instance identifier we obtain the function identifier associated with the collection of
monitor functions added to the continuation problem structure by the call to coco_add_pars.

Finally, the ‘sol’ input argument to the alg_construct_eqn constructor is a MATLAB variable of type
struct whose ‘U’ field contains an initial solution guess for the combined vector of problem

variables and problem parameters.

The call to the coco_add_slot utility ensures that the coco_save_data slot function is triggered
during continuation in response to the ‘save_full’ signal. This implies that the content of the
associated function data structure is saved with each solution file stored to disk during continuation.
The alg_read_solution utility demonstrates the use of this information for extracting the values of
the problem variables and the problem parameters corresponding to a point on the solution
manifold associated with a particular solution file.

The alg_isol2eqn and alg_sol2eqn constructors implement a COCO-specific argument parsing
mechanism for assigning appropriate content to the arguments of alg_construct_eqgn. These
constructors, in turn, rely on the toolbox utility functions alg_arg_check, alg_init_data, and
alg_read_solution.

The modification to the ‘alg’ toolbox in Section 5.3.1 of “Recipes for Continuation” is found in the
alg_v6 folder in coco/examples/recipes. The toolbox definition demonstrates the use of
toolbox settings and the introduction of the toolbox utility function alg_get_settings. In particular, it
is assumed that the ‘alg’ field of the data input argument to the alg_construct_eqn toolbox
constructor contains a Boolean value in the ‘norm’ subfield. A value of ‘true’ triggers a sequence of



actions by the constructor. These append the additional slot function alg_bddat to the continuation
problem structure and associate this function with the ‘bddat’ signal emitted during continuation.
The function ensures that the Euclidean norm of the vector of problem variables is added to the
return argument from the coco entry-point function and to the bd . mat file stored to disk.

We make additional use of toolbox settings in the modified version of the ‘alg’ toolbox in Section
16.2.2 of “Recipes for Continuation”, found in the alg_v7 folder in coco/examples/recipes.
Here, the values of ‘active’ or ‘regular’ for the ‘FO’ setting trigger the construction of a further
extended continuation problem with an additional monitor function of function type given by the
value of the ‘FO’ setting. The string obtained by appending ‘test.FO’ to the toolbox instance
identifier is assigned as both function identifier for the monitor function and string label for the
corresponding continuation parameter. The encodings of the monitor function and its Jacobian in
alg_fold, and alg_fold_DFDU rely on the utility functions alg_fhan_DFDX and alg_fhan_DFDP for
computing the Jacobians of Phi with respect to the problem variables and problem parameters,
respectively. The definition ensures that a simple zero-crossing of the monitor function is implied by
passage through a simple geometric fold along a curve segment on the solution manifold. The
charge to detect and locate such a zero crossing is encoded in the continuation problem structure by
the call to the coco_add_event utility. Here, the slot function alg_update reparameterizes the
toolbox data structure after each successful step of continuation, in support of the successful
application of the linear solver in the encoding of alg_fold.

The modification to the ‘alg’ toolbox in Section 17.1.1 is found in the alg_v9 folder in
coco/examples/recipes. Here, a value of ‘true’ for the ‘HB’ toolbox setting is used to trigger
the construction of an even further extended continuation problem. In this case, the constructor
appends an additional monitor function of function type ‘regular’. The string obtained by appending
‘test.HB’ to the toolbox instance identifier is assigned as both function identifier for the monitor
function and string label for the corresponding continuation parameter. The encoding in alg_hopf
ensures that a simple zero-crossing of the monitor function is implied by the crossing of the
imaginary axis by a complex conjugate pair of eigenvalues of the Jacobian of the zero functions with
respect to the problem variables at a Hopf bifurcation point. The charge to detect and locate such a
zero crossing is encoded in the continuation problem structure by the call to the coco_add_event
utility.

The final version of the ‘alg’ toolbox in Section 17.1.3 of “Recipes for Continuation” is found in the
alg_v10 folder in coco/examples/recipes. The toolbox definition assigns the event-handler
alg_evhan_HB to the special point associated with a zero-crossing of the alg_hopf monitor function.
The modifications to the calling syntax to the coco_add_func constructor, as well as the alg_hopf
encoding demonstrate the use of chart data to store an array of the eigenvalues of the Jacobian of
Phi with respect to the problem variables. The event-handler relies on this array in order to
distinguish between zero crossings of the monitor function associated with so-called neutral
saddles, as opposed to Hopf bifurcation points.



At long last, we close this review of the object-oriented paradigm relied upon in the design of COCO
toolboxes. Each of the template toolboxes in Part Il of “Recipes for Continuation” adheres to this
paradigm and implements toolbox-specific features to illustrate the versatility of the COCO
platform. The further modifications in Parts IV and V of the textbook provide support for event
handling and adaptive reconstruction of toolbox objects during continuation. The template
toolboxes are meant to inspire and instruct you in the design of production-ready toolboxes that
encode comprehensive sets of constructors particular to each problem class. | hope you take me up
on the challenge!



