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Alternative formulations
In the stochastic model in Box 2, space is represented by network
connectivity; physical distance and movement are captured by mechanisms
for recruitment and inhibition of connectivity. In an alternative formulation
(Figure 3), network connectivity is represented by physical proximity, and
network evolution is a passive consequence of a random walk in position and
orientation. Foragers leave and return to the colony through the opening.

Symmetry breaking
In the stochastic model, no single agent plays a central role in information
transmission. The dependence of the future state and connectivity of agents
on the network and state time histories is parameterized homogeneously
across the population. Ongoing work considers the effects of breaking this
symmetry across agents (Figure 4), allowing for variability that may render
individual agents more causally central to the effects of recruitment and
inhibition on the transient and steady-state nature of the network.

Summary
We consider agent-based, stochastic, time-dependent social network models 
of task differentiation, with emphasis on the dynamics both on and of the 
network. Of particular interest are effects dependent on network size, the 
sensitivity to perturbations, and the occurrence of spatiotemporally coherent 
structures in the network dynamics, for example, persistent or spatially 
translating patterns of connectivity.

Objective
The transmission of pheromones that inhibit the maturation of hive bees into
foragers regulates task differentiation in honey bee colonies. Significant
recruitment of hive bees into foragers occurs in the absence of such
transmission. This research aims to develop models of time-dependent social
network dynamics, which incorporate key mechanisms of recruitment and
inhibition, as well as explain transient and steady-state spatiotemporal
variations in the ratio of foragers to hive bees.

Model development
Continuous-in-time and spatially homogenized models (Box 1) of the
population dynamics in a honey bee colony assume that the recruitment of
hive bees to foragers is governed by the average density of foragers across
the entire colony, in analogy to well-stirred chemical reaction kinetics.

The low volatility of key signaling pheromones implies that in order to resolve
the time-dependent task differentiation in the colony, one must account for
interactions between individual bees. In an example model (Box 2), the
recruitment of hive bees into foragers depends on the local density of
foragers, defined in terms of a network neighborhood of interactions.

Let 𝐻𝐻 and 𝐹𝐹 denote the number of hive bees and foragers, 
respectively, such that 𝑁𝑁 = 𝐻𝐻 + 𝐹𝐹 is the population size. Then, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑅𝑅 𝐻𝐻,𝐹𝐹 𝐻𝐻 + 𝐸𝐸 𝐻𝐻,𝐹𝐹 ,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑅𝑅 𝐻𝐻,𝐹𝐹 𝐻𝐻 −𝑚𝑚𝑚𝑚,

where 𝐸𝐸 𝐻𝐻,𝐹𝐹 = 𝐿𝐿𝐿𝐿/(𝑤𝑤 + 𝑁𝑁) denotes the eclosion rate of hive 
bees, 𝑅𝑅 𝐻𝐻,𝐹𝐹 = 𝛼𝛼 − 𝜎𝜎𝜎𝜎/𝑁𝑁 denotes the recruitment rate of hive 
bees into foragers, and 𝑚𝑚 is the death rate of foragers.

Box 1. Model from Khoury, Myerscough, & Barron (2011) PLoS ONE 6(4): e18491.

Consider a time-dependent network of 𝑁𝑁 agents, and associate 
each agent with a state 𝑆𝑆, a fraction 𝑓𝑓 of neighboring agents with 
𝑆𝑆 = 1, and a recruitment rate 𝑟𝑟 ≔𝛼𝛼 − 𝜎𝜎𝜎𝜎. Then, at each time 
step, recruitment and inhibition is described by

𝑆𝑆 = 0 and 𝑟𝑟 > 0
𝑝𝑝=𝑟𝑟

𝑆𝑆 =1

𝑆𝑆 = 1 and 𝑟𝑟 < 0
𝑝𝑝=𝑟𝑟 1−1/𝑓𝑓

𝑆𝑆 = 0

where 𝑝𝑝 denotes the transition probability. Increase the number 
of agents with 𝑆𝑆 = 0 by sampling from a Poisson distribution 
with expected value 𝐸𝐸 #𝑆𝑆 = 0, #𝑆𝑆 = 1 . Remove agents with 
𝑆𝑆 = 1 with probability 𝑚𝑚. Connect isolated agents to an arbitrary 
agent of the identical state. Add a connection from each agent to 
one second-order neighbor. Remove a connection from each 
agent with sigmoidal probability as function of degree.

Box 2.Stochastic time-dependent network model by Deng & Dankowicz.

Observations
The stochastic model in Box 2 accounts for coupled, time-dependent
variations in the agent states on the network, as well as in the structure of
the network. Numerical simulations demonstrate sensitivity, for example, to
initial connectivity (Figure 1), as well as to the sigmoidal threshold for
forgetting connections (Figure 2).

As seen in Figure 1, the initial degree distribution is patterned onto the time-
dependent network, and sustained by the dynamics in the agent states, even
as agents are removed and added to the network.

Similarly, as seen in Figure 2, for low values of the sigmoidal threshold 𝑘𝑘𝑐𝑐 for
forgetting network connections, recruitment outpaces inhibition all the way
to the collapse of the network. For larger initial populations, changes to 𝑘𝑘𝑐𝑐
also affect the steady-state population size, even in cases where the network
persists.

Related trends may also be found in the distribution of ages corresponding to
the onset of foraging, i.e., the transition to 𝑆𝑆 = 1.

Figure 1. Time-dependent changes in degree distribution following initialization of 
a scale-free network (left) and a small-world network (right).

Figure 2. Time-dependent changes in population size (left) and fraction of 
foragers, i.e., agents with 𝑆𝑆 =1 (right), parameterized by the sigmoidal threshold 

for forgetting network connections 𝑘𝑘𝑐𝑐.

Figure 3. Network connectivity (green) represented by physical 
proximity of individual agents (red) translating in a bounded domain.

Figure 4. Agents with a higher sigmoidal threshold for forgetting 
network connections (larger circle) may serve as organizing centers for 

the signaling of recruitment and inhibition across the network.
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Objective
Task	differentiation	in	a	complex	system	affords	a	mechanism	for	achieving	
optimal	collective	behavior.	In	a	leaderless	society,	task	differentiation	is	an	
emergent	consequence	of	the	nature	and	ordering	of	interactions	between	
individuals.	The	distribution	of	tasks	exhibits	some	degree	of	plasticity	to	
maintain	desired	function	even	when	environmental	conditions	change.	We	
analyze	the	emergence	of	task	differentiation	in	a	model	complex	system,		
characterized	by	an	absence	of	hierarchical	control	and	relying	solely	on	local	
interactions,	yet	able	to	exhibit	coordinated	behavior	and	collective	function.

Network	filters
We	consider	network	filters:	collections	of	coupled,	linear,	mechanical	
oscillators	with	a	differentiated,	steady-state	response	to	exogenous	
harmonic	excitation.	We	focus	on	the	near-resonant	response	of	lightly	
damped	filters,	characterized	by	high-gain,	long-range	signal	propagation.

Let	𝑢 𝑡 denote	the	displacement	vector	for	a	network	of	𝑁
identical,	coupled,	single-degree-of-freedom	oscillators:

𝑢̈ 𝑡 + 2𝜁Ω𝑢̇ 𝑡 + 𝐿 + Ω+𝐼 𝑢 𝑡 = 𝑓 𝑡

in	terms	of	the	network	Laplacian	𝐿,	damping	coefficient	𝜁 ≪ 1,	
stiffness	Ω+,	and	excitation	vector	𝑓 𝑡 = 𝑎 cos𝜔𝑡.

With	𝜔 far	from	a	natural	frequency	and	large	𝑁,	we	obtain	a	
small-amplitude,	spatially	concentrated	steady-state	response.

With	𝜔 near	a	natural	frequency	Ω6 with	mode	shape	𝑣6,

𝑢88 𝑡 =
𝑣6

2ΩΩ6𝜁
𝑣6 9 𝑎 sin𝜔𝑡 + 𝒪 𝜁

is	a	large-amplitude,	spatially	distributed	steady-state	response.

Box	1.	Analysis	of	the	steady-state	response	of	network	filters	to	harmonic	excitation.

Figure	1.	Spatially	distributed	steady-state	oscillations	at	resonance	(left	panels)	and	
spatially	concentrated	steady-state	oscillations	away	from	resonance	(right	panels).	In	
each	case,	excitation	is	introduced	with	unit	magnitude	at	node	2	and	the	size	of	the	
nodes	is	scaled	by	the	largest	response	amplitude.	The	actual	amplitudes	differ	by	two	

orders	of	magnitude	between	the	left	and	right	panels.
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Observations
The	amplitude	of	the	steady-state	response	at	resonance	is	maximized	when	
the	vector	of	excitation	sensitivities	 𝑎=, 𝑎+,⋯ is	aligned	with	the	mode	
shape	𝑣6.	With	𝑎@ ∈ 0,1 ,	an	optimal	response	is	obtained	by	designating	a	
particular	subset	𝒮 of	sending	nodes	with	𝑎D = 1 for	𝑘 ∈ 𝒮 and	𝑎D = 0 for	
𝑘 ∉ 𝒮 corresponding	to	a	corner	of	 0,1 G.	This	assignment	of	excitation	
sensitivities	imposes	a	form	of	task	differentiation	across	the	network.	

1. Can	we	design	a	learning	algorithm	that	converges	to	the	globally	optimal	
assignment	of	excitation	sensitivities	based	only	on	local	interactions	
within	the	network?

2. What	conditions	ensure	such	emergent	coordination	and	what	conditions	
prevent	coordination?

Learning	algorithm
If	a	node	belongs	to	𝑃I,	set	its	sensitivity	to	0.	If	not,	look	at	the	node’s	
neighbors.	If	the	node	can	help	by	being	more	sensitive,	then	increase	its	
sensitivity,	otherwise	decrease	its	sensitivity.	When	in	doubt,	do	nothing!

Let	𝑃J,	𝑃I,	and	𝑃K denote	subsets	of	node	indices	corresponding	
to	positive,	zero,	and	negative	components	of	𝑣6,	respectively.	
Then,

L 𝑣6,D ≥ −
�

D∈PQ

L 𝑣6,D ⟹ 𝒮 = 𝑃J

�

D∈PS

is	the	globally	optimal	solution.	

Box	2.	Globally	optimal	task	differentiation	across	an	arbitrary	network.

For	𝑛 ∉ 𝑃I,	let	ℱV denote	the	neighborhood	of	the	𝑛-th	node	
(excluding	the	node	itself)	and	let	𝑔V ≗ ∑ 𝑣6,D𝑎D�

D∈ℱZ .	Then,

𝑎V ↦ \
𝜌 + 1 − 𝜌 𝑎V
1 − 𝜌 𝑎V
𝑎V

		
𝑖𝑓	𝑔V𝑣6,V > 0
𝑖𝑓	𝑔V𝑣6,V < 0
𝑖𝑓	𝑔V = 0

			, ρ ∈ 0,1

• The	designation	of	𝒮 as	any	union	of	connected	components	
of	𝑃J or	𝑃K is	a	fixed	point	of	the	learning	dynamics.

• The	designation	of	𝒮	as	the	largest	subset	of	𝑃J such	that	𝒮 ∩
ℱV ≠ ∅ for	every	𝑛 ∈ 𝒮 ∪ 𝑃K is	asymptotically	stable	if	
nonempty.	Any	proper	subset	of	such	a	set	is	unstable.	

• The	globally	optimal	designation	of	𝒮 is	unstable	if	𝑔V = 0 for	
some	𝑛,	and	asymptotically	stable	if	the	neighborhood	of	
every	node	includes	nodes	in	𝑃J.

Box	3.	Nature	of	learning	dynamics	based	solely	on	local	interactions.

Predictions	and	numerical	verification
For the mode shape in the left panel of Figure 2, 𝒮 = 1,2,5,9,12,13,15 is
asymptotically stable, but suboptimal. Every designation of 𝒮 as a subset of
𝑃J is unstable. Nevertheless, and quite remarkably, 𝒮 = ∅, 𝒮 = 6,11 , 𝒮 =
8,10,14 , and 𝒮 = 6,8,10,11,14 all attract open sets of initial conditions.

For the mode shape in the right panel of Figure 2, as suggested in Figure 3,
𝒮 = 2,6,9,12 is unstable but attracts an open set of initial conditions. On
the other hand, 𝒮 = 3,5,7,13,15 is asymptotically stable, but suboptimal.
The globally optimal solution is unstable. Two period-2 attractors exist for
0.772 < 𝜌 < 0.880. Recurrent transitions between the unstable suboptimal
fixed points 𝒮 = 2,6,9,12 and 𝒮 = 2,6,7,9,12 may be induced by noise.

Discussion
Social	insects	appear	to	rely	on	interaction	networks	to	structure	the	
allocation	of	tasks	across	the	colony.	For	example,	signaling	substances	may	
be	exchanged	during	trophallaxis	to	regulate	the	recruitment	of	hive	bees	
into	foragers.	The	model	analysis	shows	that	local	interactions	that	seek	to	
achieve	a	globally	optimal	behavior	may	lead	a	system	to	converge	to	a	
condition	of	collapse	(here,	𝒮 = ∅),	in	which	negative	feedback	suppresses	
the	contributions	of	individual	agents	toward	optimal	coordination.	Whether	
this	phenomenon	explains	empirical	observations	on	failures	of	social	insects	
or	other	complex	systems	to	coordinate	remains	an	open	question.

Figure	2.	For	a	given	mode	shape,	the	existence	and	stability	of	fixed	points	of	the	learning	
dynamics	depends	on	the	distribution	of	nodes	belonging	to	𝑃J	(blue)	and	𝑃K (red).	

Figure	3.	Iterated	dynamics	of	the	learning	algorithm	for	𝜌 = 0.8 and	initial	conditions	near	the	
trivial	fixed	point	𝒮 = ∅ (left)	and	near	a	cycle	of	noise-induced	connecting	transitions	(right).
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