![]() |
![]() |
![]() |
Home Toolbox functions Sample projects Tutorials Downloads |
|
Proceed to derive the dynamic equations of motion of the wheel with gravity as the only applied force. In the MAMBO toolbox, type >kde:=solve(kde,{q1t,q2t,q3t,q4t,q5t,q6t,q7t,q8t,q9t,q10t}); >v:=subs(kde,VelocityDescription([LinearVelocity(W,B),AngularVelocity(w,b)])); >beta:=CoeffExtract(v,[u1,u2,u3]); >p:=subs(kde,MomentumDescription([LinearMomentum(W,B,m),AngularMomentum(W,b,matrix([[m*R^2/2,0,0],[0,m*R^2/2,0],[0,0,m*R^2]]))])); >force:=ForceDescription([MakeTranslations(w,0,0,-m*g),NullVector()]); >DeclareStates(u1,u2,u3); >dde:=convert((subs(kde,DiffTime(p,w)) &-- force) &oo beta,set); (Note that the 'VelocityDescription', 'CoeffExtract', 'MomentumDescription', and 'ForceDescription' functions are only available with the MAMBO toolbox 2.0.) Use the MAMBO toolbox to generate a corresponding MAMBO motion description. In the MAMBO toolbox, type >MotionOutput(ode=kde union dde,filename="c:\\MamboProjects/tutorial.dyn",parameters=[m=1,g=10,thickness=0.01,length=10,width=10,R=1,marker=.02],states=[u1=0,u2=-3,u3=3,q1=0,q2=0,q4=0.3,q5=0.7,q6=1.7,q7=3.012388980,q3=0.6942176872,q8=5.412388980,q9=0.2260263213,q10=-0.7306816499]); Reload the motion description into the MAMBO project by selecting the 'File->Reload Simulation' menu item. Generate a time history corresponding to the initial values for the MAMBO state variables and animate the result.
|
|
©2004-2017 Harry Dankowicz Mechanical Science and Engineering University of Illinois at Urbana-Champaign | Home Toolbox functions Sample projects Tutorials Downloads |